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Introduction

1 Introduction

If you want to find out your mass (many people don’t), this seems to be a trivial
matter: you stand on a scale and read off the result (which is believed to be sys-
tematically too high).

Whenever a new particle can be added to the particle zoo, one tries to find out as
much as possible about its properties (as mass, charge, spin, decay rate and modes,
etc.). If we want to measure the mass of an electron, for instance, this can only
be done indirectly: From Milikan’s experiment we get the elementary charge e and
with the help of a beam tube one is able to measure the ratio m./e.

When determining the electron mass, one makes use of the crucial fact that (almost)
free electrons do exist. If we are dealing with quark masses, we encounter a prob-
lem: due to confinement, free quarks simply don’t exist. To get some knowledge
concerning their masses, we are forced to go a much more indirect way than in the
case of me. One has to gather information giving hints concerning quark masses or
quark mass ratios from many sides in order to get reliable predictions.

Chiral perturbation theory (xPT), an effective field theory describing the low en-
ergy regime of QCD, does not allow to determine the individual quark masses
phenomenologically. This is because the low energy constant B occurring in the
effective Lagrangian (see section 2.4) can not be measured directly. Predictions for
the absolute values of the quark masses are obtained e.g from QCD sum rules or
lattice calculations. They depend on the running scale u of the MS renormalization
scheme. The modified minimal subtraction scheme MS will be used in section 2.8.3.
The scale p may e.g. be chosen such, that m, equals the mass difference between
isomultiplets differing by one unit of strangeness in some SU(3) multiplet. The es-
timates for m, range from about 120 MeV (1 = 1 GeV) up to 180 MeV (u = 2 GeV).

In the following work it is presented, how the quark mass ratio

2 2
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may be determined by investigating the decay  — 3w, using dispersion relations,
married with chiral perturbation theory — and with the help of computers.

At treelevel, the YPT prediction for the rate of the decay n — w7~ m0 is I'%°¢ =
66eV. The one-loop calculation leads to I'''°°P = 160eV. This is quite a large
correction — the one-loop result accounts for contributions of O(m;), which typically
are of order 25% — nevertheless the one-loop prediction is still far away from the
experimental value ['**P = (273 &+ 26) eV. One may expect higher loop calculations
to enhance the prediction for the decay rate further. Taking more loops into account
will give a better description of the final state interactions which are rather large in
the present case. However, such calculations would get quite arduous. An elegant
method which allows one to account for even large final state interaction effects are
dispersion relations.

Using the leading order expressions for the masses of the pseudoscalar mesons (see
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section 2.5) together with the Dashen theorem (section 2.6.2), one finds that @ is
related to the physical kaon and pion masses by

2 2 2 2 2
i _ (mKO _mK++mﬂ'+ _mﬂ'o)mﬂ'o
2 2 2 2 ’
Q My (mK - mﬁO)
2 _ 1 (2 2 ; ;
where m% = 3 (m o tm K+) . Inserting the experimental values for the masses

into the above formula, we get () = 24.2 as a standard value.

Now, the point is that the decay rate for n — 37 is proportional to the quark mass
ratio Q~* — we may turn the tables and use the prediction for the factor of propor-
tionality to determine @@ with the help of the experimental value I'**P,

Crudely speaking, unitarity will show us how to connect the imaginary part of the
decay amplitude with the amplitude itself. The fact that an analytic function is
uniquely characterized by its singularities will allow us to represent the amplitude
by an integral over its discontinuities along a branch cut. These discontinuities
are determined by the amplitude’s imaginary part. Combining the implications of
unitarity and analyticity will lead then to a couple of integral equations, whose
solution can be found iteratively. Following this way will give us a more accurate
representation of the discontinuities than the one-loop result. However, unitarity
and analyticity will determine the amplitude only up to some subtraction polyno-
mial — yPT will be needed to fix them. Quite a large part of the time I had at
my disposal for the diploma work was spent to persuade the computer to solve the
integral equations.

In principle, the dispersive analysis of » — 37 allows one to determine the quark
mass ratio () rather accurately — an uncertainty of 10% in the decay amplitude will
reduce to a 2.5%—error in Q.
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2 Physical aspects

2.1 The Noether theorem

In this section I will very briefly sketch some aspects of the Noether theorem that
will be used in the next section. For a much more detailed exposé I refer to the
textbooks [3] and [5].

We consider a theory with a set p(z) = {p1(x),...,pn(x)} of fields and Lagrangian
density £ = L (¢(z),0,¢(z)). The action is defined as S = [d*z L (o(z), 0, 0()).
The principle of least action, which is a classical one, says that the physical field
configuration will be such that S is invariant under any infinitesimal variation d¢p
of the fields ¢, which does not hurt the conditions posed upon ¢(z). If we impose
the natural requirement on ¢(x) to vanish as x — 0o, the same has to be satisfied
by dp(x). The variation of S due to dp(z) is given by:

68 = }:/& (—4% agi0”%>:&
n¥'e

Performing a partial integration and noting that the surface terms vanish, we get:

55 = Z/&(w “£i)w@:o

Since this must hold for (almost) arbitrary dp(z), we deduce the Euler-Lagrange
equations, which have to be satisfied by every dynamical field appearing in the
Lagrangian:
oL oL
Opi " 00upi

These are the classical equations of motion for the fields p;(x).

We now turn to the Noether theorem. I will discuss it here only for the case of
internal symmetries. Assume £ to be invariant under the transformation ¢;(z) —
wi(x) +ieF;(x), where € is an infinitesimal constant and F;(z) may depend on ¢(z)
and J,p(x). Independently of whether p(x) satisfies the equations of motion or
not, this reads:

=0. (2.1)

oL

oL
0L =ie (awl Fl(CU) + m@ﬂ(m)) =0. (22)

If we now in addition take p(z) to satisfy the Euler-Lagrange equations (2.1), we
immediately find the current

oL
JH(z) = —i———F; 2.3
(#) = ~igg o Fil®) (23)
to fulfill the continuity equation
OuJ" =0. (2.4)
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There is a conserved charge associated with each current:
Q= |z Jx). (2.5)

On the quantum mechanical level the charge Q becomes an operator. Supposed
that OpF; = 0, it acts as a generator of the corresponding symmetry, in the sense
that [¢;(x), Q] = F;(z) and an infinitesimal transformation of the fields p;(z) may
thus be written as

¥i(x) = i() +ielpi(z), Q).

I just mention that other conserved currents may be found due to external sym-
metries, coordinate transformations leaving the Lagrangian L (not necessarily the
Lagrangian density £) invariant. The most important consequences thereof are the
conservation of energy, momentum and angular momentum.

2.2 The Goldstone theorem

Consider a Lagrangian L£(¢1, ..., oN,Ou@1, ..., Oupn), Where the ¢, are hermitian
scalar fields. Suppose that the Lagrangian is left invariant under the global sym-
metry transformation o, () = @, (z) + i€, tpmpm(T):

oL . oL .
oL = Z (T%zeZtnmwm(w) + 86u¢nleztnm6”(’0m(w)> =0.

In the following we are interested in the physical vacuum. When considering the
vacuum one would intuitively think the vacuum expectation value of the fields
to vanish. However, this needs not to be true — the physical vacuum, being the
lowest energy eigenstate, may happen to be a non-singlet state where the fields
pick up an expectation value. What happens is, that the vacuum itself does not
show the symmetry properties of the underlying theory, namely the corresponding
Lagrangian. This phenomenon is called spontaneous symmetry breaking. We now
want to consider the case where such a spontaneous symmetry breaking takes place,
and show the consequences for the masses of the particles of the theory. The vacuum
state is denoted by V3¢ = (3¢, ..., p¥2°).

We make the important assumption that the vacuum is translation invariant. You
may cast this in doubt: The spontaneous breakdown of a symmetry only takes place
when the temperature, which after bigbang was arbitrary high, is low enough. One
may think of the possibility that, during the universe was cooling down, different
domains with a vacuum state of their own were formed. However, no hints of such
a scenario influencing today’s particle physics have been found and we may take
translation invariance of the vacuum as granted:

6#30Xac =0.
The variation of £ then reads:
oL .
0Ly pe = Z Do 1€ tnmgoxac =0.
n,m Pn |vac

From this, performing another derivative with respect to ¢;, we deduce:

Z awna(pl tump X"oac + Z

tety = 0. (2.6)
Vac

Vac



2.2. The Goldstone theorem

The Hamiltonian density is given by H =" 86860 Oupn — L. For the vacuum this
means H = —L and the condition for the vacuum to be a state of minimal energy
reads:

oH oL

- = =0. (2.7)

Opn pVae Ovn pVac

A state of minimal energy has to exist — otherwise the system would not be stable.
Having a theory equipped with spontaneous symmetry breaking means:

Z trmprd® £ 0 for certain n.
m

On the other hand, in view of (2.7) equation (2.6) becomes

oL
2 Fond

i | et =0. (2.8)
n

Vac

Introducing the matrix M? with elements M?;, = and defining @, =

~ 5ot
> tnmpn€, we can write equation (2.8) as M%@ = 0.
Assume that we have chosen our field basis in such a way that the free part of H is
diagonalized. M? is nothing else than the mass matrix belonging to our Lagrangian
and will be diagonal then, too. To conclude, we have

2 —
my $1

2
my PN

The fact that the vacuum is a state of minimal energy ensures m? > 0.

Let’s denote the generators of the symmetry group G by t*. An infinitesimal trans-
formation of V3¢ is then given by V3¢ — a,t%p¥2¢. All the t* with t%pV3¢ = 0
then generate a subgroup H of G. The generators t* ¢ H generate the coset space
G/H. The vectors t¢V3 # 0 are linearly independent, otherwise one could find
a linear combination T' # 0 of t*’s € G/H with T¢"V® = 0. The |G| — |H| gen-
erators of G/H thus lead to |G| — |H]| linearly independent equations of the form
M?2tapVa¢ = (). From this we conclude that there must be |G| —|H| zero eigenvalues
m?.

Up to now the arguments were classical ones. There exists a similar quantum
mechanical proof using the effective action description. However, to see that the
Goldstone theorem holds also after quantization, let’s look at an other argumenta-
tion.

According to the statement in the last section, we have

[pi(@), Q] = tinpr(w), (2.10)

where () denotes the conserved charge associated with the symmetry transformation
vi(z) = @i(x) + ietippr(z). Instead of ¢)3 we now have to consider the vacuum
expectation values (0|p;(z)|0), which, assuming again translation invariance of the
vacuum, are independent of . If the symmetry is broken, there exists an ¢ for which
tir (0|¢x (x)|0) # 0 and we find, in view of (2.10),

(O [pi(x), @110) = tik (Olpr(x)[0) # 0. (2.11)
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This clearly implies Q|0) # 0. Inserting a complete set of momentum eigenstates,
the vacuum expectation value of [¢;(z), @] becomes

Ol @110) = (53 {Oleitn) (0l°w)I0) = (O W)In) {mlifo)} =

53 N 50,0 _,0,0

> Gy @) {7 Olil) ] @[0) = e (010 O) ) (mlilo) - (2:12)
n

where we used J*(z) = e J#(0)e~F* and P|0) = 0, P|n) = pp|n). The fact,

that the current .J is conserved, is not affected by spontaneous symmetry breaking.

Therefore

/d3x<0|[g0i,6gJ0(y)]|0> = —/d3x(0|[%,6y,ﬂ 110y =
14 |4

—/d5<0‘[g0i,f(y)”0>—>0 (V = o0). (2.13)

ov

This implies that
— i 0,0 _,0,0
> 0% (F) {77 Olpiln) (n]1°(0)[0) + e 2" (01 (0)ln) (nlpil0) ] (214)

vanishes for all y°. The fact that the left hand side of equation (2.12) is different
from zero, requires that there exists a state | N) for which (0|gol|N (N|JO( )|0> #0.
However, the expression (2.14) will then only vanish for all y° if p& = 0 for g =0
and we conclude that |N) has to be a massless state.

Since ; is a scalar field, ¢;|0) must be rotation invariant. For any state |n) with
helicity different from zero, we therefore have (0|¢;|n) = 0. The same holds for
(n]J°|0) for states |n) with different unbroken internal quantum numbers than JO°.
Thus |N) must be a state of spin zero and the quantum numbers of J°.

2.3 The chiral limit

The Lagrangian of QCD with Ny = 3 is given by

Locp = _ZGZ”GGW + qiv* D, q + gMg,

where G4, = 0,G% —0,G% + f**°G" G5 is the gluon field strength. The color-gauge
covariant derivative is given by D, = 0, — zGﬁ’\Ta M denotes the quark mass
matrix and ¢ collects the quark fields:

my 0 0 n
M = 0 mg O , g=1| d
0 0 mg s

_1+’75 _ __].—’)/5
qr = 2 q, qr = ¢ 2 )
_1—’75 _ __1-{-75
qrL = 2 q, qr. = ¢q 2 )

according to their transformation properties under application of the operator ~s:

Ysqr = 4r, V5qL = —4L-



2.3. The chiral limit

In the case of massless QCD, M = 0, the right- and left-handed parts decouple (in
view of v575 = 1 and {75, 7*} = 0) and the Lagrangian may be written as

Laon = — 7G4, G + arin Dugr + @rin* Dy
Consider the transformation qg — Vgrqr, qr — Viqr, which implies gg — szV;%,
qr. — (ILVLT. Provided V}gVR = VLJr VL =1, the above Lagrangian is invariant under
this transformation — we have found a global symmetry of massless QCD. Within
classical chromo dynamics the symmetry group G is given by U(3)g x U(3) =
SUB)rRxU(1)gxSU(3)r, xU(1). G is generated by totally 2Nf2 = 18 generators,
each of them giving rise to a conserved Noether current. However, upon quantization
one of them turns out not to be conserved; it will be specified below. In QCD, the
symmetry group is reduced to G = SU(3)r x SU(3)r X U(1)R+L-
The elements of U(1) are of the form exp(ia), whereas the elements of an SU(3)
are generated by X = (A1, ..., A%); each V € SU(3) can be written as

Y X
V = exp (’LZ@G7> = exp <z¢'§> .
a=1
145

The operator =5, acting on gg, has the same effect as the unity operator, but will
give zero operating on gr. Interchanging qr with ¢r, the analogous relations hold

for the operator 1_275. We define the generators

- 14 s =
Xp = 275A,
. 1— e o
X = 275)\.

Their commutators are:

A% AI})% — abcA% )‘% A% s abc)‘i )‘7% )‘% _
PRl AR RN e A e o x o i

Using these two sets of generators of SU(3)r and SU(3)L, respectively, we have

R X
VrRqr = exp PR | 4R = XD | 1PRY | 4R,

VrRar, = qu,

AL X
Vg = exp WL | ar = exp (Wry | 4L,
Vgr = qg.

The two matrices Vg and Vi, may thus be combined to a matrix V' acting directly
on q:

D VRN V)
Vg =exp (ZSORT + 1¢L7> q.
V can be written in yet an other way, splitting the exponent into two pieces, one
of them transforming qr and ¢, into the same ”direction”, the other describing the

”difference” between Vi and V:

Pr+PL,v v PrR—PL,v A A X
V = exp <ZW(/\R +)\L) +ZL2QDL()\R — /\L)> = exp (ZQOVE +Z(,0A’75§> )
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where ¢V = (Fr + @) and F4 = (Fr — Fr). We have replaced the generators
A% and A} of SU(3)g x SU(3)r by the generators A}, = A* and A% = 5A* with
commutators

)‘(\L/ >‘{\)/ _ abcA%/
|:_ :| 7/f 7)

. My A4
22

AS PYADY A
__ s pabc MV VO A s pabc A
22| T S [ ] EANSR

27 2|

It was somehow a detour to reach the final form of V', which could have been seen
directly. However, I think it’s more instructive to follow the above way in order
to see why this symmetry is called chiral symmetry — for m, = mqg = ms = 0 the
QCD-Lagrangian for Ny = 3 is invariant under independent rotations of the left-
and right-handed quark fields.

An infinitesimal symmetry transformation of the quark field ¢ is given by:

o AT AC
q— (1 —f—ze({/? +Z€?4’75? +zaR+L> q.

Using %ﬁq = igy*, the Noether currents associated with the symmetry group G
Iz
become, according to the definition given by equation (2.3):

A
Vi = aw -5 0

_ ¢
AL = s - ¢
Vil = g

As already mentioned above, in the classical limit there is a 18th conserved current.
It is associated with the symmetry transformation ¢ — (1 + iag—r75) ¢ and is given
by A), = §vu759-

So far we have considered the case of massless QCD (with Ny = 3). Turning on the
quark masses will couple the left- and righthanded quarkfields — chiral symmetry
is explicitly broken. Since m,, mg and my are small, the corresponding symmetry
breaking terms may be considered as a small perturbation in the QCD Hamiltonian
— chiral symmetry is an approximate symmetry. The divergences of the currents
Vi and A}, no longer vanish:

a - A
8“‘/“ = 4q {M,;]%

a

iq {M, %} q.

The divergences one immediately gets in view of the Dirac equation which holds
for every color component separately: (iD,y* — m)g. = 0, where g. denotes a
quark spinor of flavour ¢ and color c. In the case m, = mq = ms the commutator
[M, A?/2] vanishes and V is still a conserved current.

Besides this explicit symmetry breaking QCD is generally assumed to exhibit also
a spontaneous symmetry breakdown, namely of the group SU(3)g x SU(3)y, to its
subgroup SU (3) g+, generated by the generators A{,. In the case of massless QCD
one therefore expects the theory to contain 32 — 1 = 8 Goldstone bosons. The effect
of the quark masses is, to turn these Goldstone bosons into ”pseudo” Goldstones,
no longer being massless particles. Indeed, the physical spectrum of QCD contains
particles that very well fit this pattern known as the famous eightfold way: the
pseudoscalar octet, consisting of the mesons (7%, 7%, K* K% K° 5). Their

quantum numbers are precisely those of the Noether currents Aj associated with
the spontaneous breakdown of chiral symmetry. Three of these mesons (the pions)

o AL
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are particularly light, what is to be expected, if the group SU(2)g x SU(2),, is an
almost exact symmetry leading to 22 — 1 = 3 especially light pseudo Goldstones.
This requires one of the quark masses m,, mq or ms to be big compared to the
other two. Since the pions carry no strangeness, it’s ms to be the big one.

In the case of vanishing quark masses the currents Af, (a = 1,...,8) are conserved.
The charges Q* associated with Af, commute with the Hamiltonian H: [Q*, H] =0
Thus the state Q%|h) has the same energy as the one-particle state |h), but is of
opposite parity. If chiral symmetry were unbroken, Q%|h) would be a one-particle
state, too, degenerate with |h). However, no such parity doubling is observed —
instead there exists a state of almost the same energy and opposite parity as |h)
containing one hadron and a pion. This further corroborates the interpretation of
the pseudoscalars as the Goldstone bosons of a spontaneously broken approximate
symmetry.

2.4 Effective Lagrangian and xPT

The relevant degrees of freedom of a theory depend very much on the energy scale.
The idea of effective field theories is, to find a description more appropriate to low
energies than the underlying fundamental theory provides. The remnants of the
underlying theory are its symmetries and the low energy constants which so to
speak encapsulate the short-distance structure.

In principle the dynamics of the pseudoscalar mesons are determined by QCD, as
they are bound states of this theory. However, up to now it isn’t possible to solve
QCD exactly. Moreover, due to the fact that color is confined, quarks and gluons
don’t appear as free physical states.

The effective field theory of QCD is called chiral perturbation theory (xPT). The
quark and gluon fields are replaced by a set of eight pseudoscalars, the Goldstone
bosons related to the spontaneous breakdown of SU(3)r x SU(3)r to SU(3)r+L-
We collect these pseudoscalars in the field # = (7*,...,7%).

Let’s denote the space of pion field variables by II and its origin by 0,. The neutral
element of the symmetry group G we call 1. The pion field transforms according to
a representation of the symmetry group G — this means that there exists a mapping

f: GxII —1I
such that

VRell: f(lg,7) = 7, (2.15)
Vg, 92 €G, T ell: f(gig2,7) = f (g1, f(g2,7T)) .

This implies that those elements h € G with f(h,0,) = 0, form a subgroup H C G.
We may define an equivalence relation ~ on G by calling two elements g;, go € G
equivalent exactly if f(g1,0;) = f(g2,0;). From (2.15) one immediately gets

g~ gh VheH,

and, noting f (g7, f(91,0+)) = f(1,0x) = Oy, one finds

f(g1,0x) = f(g2,07) < g;'g2 € H.

Therefore the equivalence classes defined through the relation ~ may be identified
with the cosets {gh, h € H}, the elements of G/H. We choose a representator n
in each coset. There is a one to one mapping between the set NV of representators
and {f(g,0:), g € G}, the values of the pion field variables, i.e. Vg € G 3 exactly
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one n € N such that f(g,0,) = f(n,0:). The transformation law of the pion field
is fully fixed. The action of ¢ € G on 7, = f(n,0,) is:

7, = £(9,70) = (g, F(n,00)) = F(gn,0,) = F(n'h,0,) = 7o, h € H.

In the present case G = SU(3)g x SU(3);, and H = SU(3)g+r. The set of rep-
resentators we choose to be N = {(V,1),V € SU(3)}. The coset C > (V,U) is
then represented by (VUT,1). Multiplication of two elements of G/H we define by
multiplication of their representators (V1,1), (Va,1) € N: (V4,1)(Va,1) = (ViV5,1).
The structure of the coset space G/H is thus the one of the manifold SU(3). Note,
that the diagram

GxG@ —— G

! l

NxN —— N

does not commute, however.
The eight ordinary fields 71, ..., 7® may be collected in a matrix field U € SU(3),
replacing 7. In this work I will stick to canonical coordinates:

U(z) = exp (iap(x)) = exp (ia Z Aﬁ@;)) , (2.16)

where A; denote the Gell-Mann matrices. Using these coordinates allows us to
embed the set II in SU(3)gr x SU(3)r by identifying U with the representator
(U,1). The action of g = (Vg,Vy) € G on U we get from

gn = (Vg, Vi)(U,1) = (VRU, Vi) = (VRUV},1)(Vy, Vi) = n'h.
so that the transformation law of the pion field reads
U'(z) = VRU (x)V;. (2.17)

We have considered here the case Ny = 3. In the general case the fields of the
Goldstone bosons are collected in a Ny x Ny matrix field € SU(Ny). However,
the mass terms associated with the heavy quarks (¢, b, t) may not be considered
as a small perturbation. Turning the masses m., my, m; off would not be a good
approximation. One therefore limits Ny to Ny < 3.

Using canonical coordinates the QCD-Lagrangian is replaced by an effective La-
grangian

Lo = Log(U,0U,0°U,...),

For L. we write down an expansion in powers of derivatives of the field. Lorentz
invariance restricts the series to terms containing even powers of derivatives. For
massless QCD this reads

0 2 4 6
Lar=L+L2 + 28+ + ...,
where the superscript n in L’g?f) denotes the number of derivatives appearing in the
corresponding term. The form of Leg is very much constraint, because it has to
respect chiral symmetry. In the case M = 0 the momentum independent term £gf)f)

has to be a constant: setting V, = U and Vg = 1 we get

Q) =cYavut) = ).

10



2.4. Effective Lagrangian and xyPT

This reflects the fact that Goldstone Bosons with vanishing momenta don’t interact.
At O (pz) one finds a single invariant. Dropping the irrelevant cosmological constant

£gf)f) , the leading contribution to the Lagrangian can be written in the form

Ly =—(0,U8"UTY, (2.18)

where (A) denotes the trace of the matrix A. The expansion of the matrix field U
reads:

. a? ia® at
U=1+ia¢— ?¢2 — ?¢3 + ﬂ¢4 + 0(¢5)

The kinetic part of the Lagrangian becomes Ly, = £ 220‘2 Oumo* 7. To get the stan-
dard normalization of this term, we have to set o = F~!.
The pion decay constant Fj is defined through the matrix element of the axial

current A (see preceding section) between the vacuum and a one-particle state:
(01A%|7"(p)) = ipu6** Fr. (2.19)

The Noether currents of Egr) associated with the SU(3) g and the SU(3) 1 symmetry,
respectively, are

Jie =i (X8, UUT)  and J = —ia(AUT,U).
From this we find the following expressions for the vector and axial currents:
Vi = Jig +Jip =ia (A" [0u0, UT]) )
Ag = Jt, = J =i (A {0,U,U'}). (2.20)

We evaluate the matrix element defining F); using this explicit representation for
Al
o

(01417 () = 2 (O A NDu) [ (p)) = ~F5F (010, | () = iF5"p,.

and conclude F' = F.
As already mentioned, chiral symmetry is explicitly broken by the quark masses.
This leads to symmetry breaking contributions to Leg; the leading term is

F2
Ly = T” (xU"+Ux"), where x=2MB.
The low energy constant B is real, if one requires the effective Lagrangian to be
parity invariant and uses a diagonal and real quark mass matrix. For a derivation
of the form of the symmetry breaking contribution see [12]. To maintain chiral
bookkeeping, M has to be counted as two powers of momentum. Hence the leading
term in Leg is given by
9
s

5(2) _

of = (0,U8"UT + 2MB(U + U")) , (2.21)

The theory described by Egr) is also referred to as the non-linear o-model. Taking
symmetry breaking into account, chiral perturbation theory results in a simultane-
ous expansion in momenta and quark masses. The expansion of L’gf) reads
2 = Lo zomz 1 <L[a 6, 8110”6 ¢]> +
off = g7H 48F25 M ’
B
24F?

<BMF,% - qus? + M¢4> +0(6%). (2.22)

11



2.5. Pseudoscalar masses

The term (BMFE) = BF?(my +mg+m;) is related to the quark condensates, the
vacuum expectation values of the operators gg. The operator @u is related to the
QCD-Hamiltonian by au = 8{3{% . The vacuum expectation value of wu is thus
equal to the derivative of the vacuum energy with respect to m,. At leading order,
the vacuum energy is —(BMF?) and we get

(0au|0) = (0|dd|0) = (0|3s|0) = —BEF? + O(m).

The quark mass condensates are called order parameters — they are a measure for
the strength of the spontaneous symmetry breaking.

Finally let’s write down the matrix ¢ in terms of the conventionally normalized
pseudoscalar meson fields

This yields

¢ = V21 —m?+ et V2K° | (2.23)
— 0 2 8
V2K V2K Z

2.5 Masses of the eight lightest pseudoscalar mesons
and n7%-mixing
The symmetry breaking contributions to Leg provide mass terms for the pseu-

doscalar mesons. Expanding U, one may work out the kinetic part. At leading
order this yields:

£8) = B0t - BM(s?) =

Oumtotm™  — B(my +mg)rtm +
19, m3omx®  — L1B(m, +mg)n® +
0, KtOP K~ — B(my +ms)K+tK- + (2.24)
0, K°*K® — B(mg+ms)K°K° +
§OLm MRS~ FB(%e+ B+ gt 4
- 27%#37r8(mu—md).

From this we read off the following leading terms to the mass squares of the charged

pions and of the kaons:

mfri = B(my+mg),
mi . = B(my,+ms), (2.25)
Mo oo = Blmg+ms).

12



2.6. The transition amplitude A,_, + -0

The appearance of the term 2\/—1§7r37r8(mu —1myg) in equation (2.24), is an effect caused

by isospin-symmetry breaking. The presence of this contribution mixed in 737% just
tells us that the field basis we were working with so far does not correspond to the
physical particles of our theory; namely that the 72 field will not only create neutral
pions but also n- particles. Thus we are forced to look for a new basis in order do
get a diagonal mass matrix for the physical pseudoscalar mesons.
We reexpress 73 and 78 by the physical fields 7 and 5 as follows:

0

7 = cosen’ —sine 7,
8

7 = sine 7 4+ cosen. (2.26)

where € denotes the mixing angle, which is small.
Using the approximation cose ~ 1 and sine = ¢, collecting all terms in 7°7 and
requiring them to vanish, we get € to leading order:

\/g mg—1m
_ Vomd 7 My 2.27
¢ 4 mg—1m ( )
where m = (my, + mq)/2.
Again we work out the kinetic part of L’gf) containing the 7°- and n-field. Up to
order (mg — my)? we get for the corresponding masses of the particles 7° and 7:

m2, = B(m,+mg) — A,
mi = B<—4m8+m"+md>—l—A,
3
2e 4ms+mu+md
A = =(my - " .
\/§(m“ mq) + € ( 3 (mu+md)>

Using the expressions for the mass squares for the 7+- and K-particles found above
we may reexpress A and finally get:

4
mio = mie = g€ (mi —miL),
dm, u 4
m% = B <W> + 562(m%< _ mi:‘:); (228)
where m% = £ (m3, +mio)-

The n%7-mixing causes a difference between m2, and m2,. The masses of the

charged pions and the kaons are not affected by the mixing. From equation (2.25)
and (2.28) one also reads off the Gell-Mann-Okubo formula which holds to leading
order in the quark mass expansion:

Sm% +m?2 = 4mi;. (2.29)

2.6 The transition amplitude A, _, +,—7o

2.6.1 Current algebra result

To calculate the transition amplitude A, +.-,0 at O(p*) we have to extract the

2 . _ s
terms of L’iﬂ) containing one 7-, one 7t-, one 7~- and one 7’-field or derivatives

thereof. From equation (2.22) we obtain two parts relevant for the O(p?) interaction
E(2),tree_

Lagrangian £, "
B 0

33 (my —mg)nata~n (2.30)

13



2.6. The transition amplitude A, _, + -0

arising from 55 (M¢*) and

1
me(?@w“@“ﬂ'ﬂron + 20,70 yrt ™ — 0w OFrOnt —

OurtoFnr’r~ — Oy~ O ryrt — 9t 0T (2.31)

from expanding ﬁ ([Ou, P][0" ¢, #]). In this approximation, the transition am-

plitude is given by (7r+7r_7r0|£7(72_);§;ee|n). Using creation and annihilation operators

we get the usual Fourier decomposition for the field operators, namely

d3p -\ _ipx =\ —ipT
(Pneutral(w) = /m (O'L(p)elp +a’lp(p)€ P )

for neutral fields (as 1 or 7°) and

d3p =\ _ipT =\ —ipx
Socharged(x) = /m (bl,(p)ep +C¢(p)6 b )

for charged fields (as 7t or 7). The field operators for particles and antipar-
ticles are the hermitian conjugate of each other. Further we have [a(p),af(p")] =
(27)32pod® (P—p"), where a and a' stand for any annihilation- and creation operator,
respectively. All other commutators vanish. The states occurring here are

In(py)) = al(py)|0),
7t (py), 7 (p=), 7 (po)) bl L (p1)el s (p=)ale (po)|0).

When contracting the operators according to Wick’s theorem, one gets some §-
functions which can be integrated out. What remains is a factor ip# for each 0%«
and a factor —ip}; for 0#n. The term containing no derivatives yields

B
3V/3F?2

The other term gives a contribution a little bit more complicated:

(my —ma). (2.32)

€

3E?2

7T

(2p_p4+ — 2popy + P—py + PPy — P—Po — P+Po)- (2.33)
Using p, = p+ + p— + po and adding the two contributions yields, up to O(e),
1 /B
A7’I—>7T+7T—7r0 = m (%(mu - md)
—e(ph +p> — 205 + 4p+p— — 2p1po — 2p_po) ) (2.34)

Further we have from equation (2.25) and (2.27)

- 6_\/% (4ms +my +mg — 3(my +ma)) = —\/ge(mi —mz)- (2.35)

At last we make use of p3 ;= m2 and (py +p_ +po)® = m% to get the final
result for the transition amplitude in the treelevel approximation:

4
A77—>7T+7T*71'0 = _% <S - _m3r> ) (236)

14



2.6. The transition amplitude A,_, + -0

where s is one of the three Mandelstam variables: s = (py +p_)?%, t = (p_ + po)?
and u = (po + p+)?. s, t and u are related by

s+t+u:m%+3mi = 3sp. (2.37)
The O(p?) chiral perturbation theory calculation (2.36) reproduces the current al-
gebra result.

2.6.2 Electromagnetic corrections

At leading order in the low energy expansion, the electromagnetic interaction can
be described by an effective Lagrangian of the form

e =c-(Quauty, (2.38)
where Q is the charge matrix of the three lightest quarks:
. 2 0 0
Q= 3 0 -1 0 . (2.39)
0 0 -1

In order to maintain the usual chiral counting, one may set e ~ O(p). Thus (2.38)
indeed yields a Lagrangian of O(p?).
The term quadratic in ¢,

C 20¢?
5z Q) = - F: (7hm + KTK),

accounts for the self-energy of 7% and K*. It contributes equally to their mass
squares, which implies,

2 2 _ 2 2 2 2
(mKU - mK+)QCD =Mgo — Mg+ +m7r+ — Myo.

This is Dashen’s theorem. yPT provides an elegant derivation thereof.

The electromagnetic interaction causes the main part of the difference mfri — mio —

it is much bigger than the O ((md — mu)2) contribution stemming from n7°-mixing
(see equation(2.28)).
2Ce?
(m2e —mk), = 77 T O (me?) . (2.40)

K
The terms in E((jf)’em quartic in ¢,

1 L o 1 3, Lqnn2

F§<12Q¢ 3Q¢Q¢ +4Q¢ Q¢>,

give no contribution of the form 77~ 7. At treelevel, Egr)’em therefore induces
no transition n — 3w. This is no longer true when taking one-loop graphs into
account — there will arise O(me?) contributions.

The current algebra expression, equation (2.36), is modified because of the self en-
ergy of 7*. Equation (2.35) remains unchanged (B(m, +mg) = m?). Reevaluating
the part of (2.33) involving the pion momenta changes the current algebra result to

Ay yrtm—m0 = —% <s — g (mfrJr + miO)) . (2.41)
s

On the one-loop level there will also be final state Coulomb interactions between

the charged pions. It leads to an O (e2p*(mg —my)/(ms — 1)) contribution to

the decay amplitude. For a discussion of electromagnetic corrections to the decay

n — 3w of order p’e? see [8] — this calculation shows that the electromagnetic

corrections are negligibly small.
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2.6. The transition amplitude A, _, + -0

2.6.3 General structure of the transition amplitude

The main contribution to the decay amplitude Ay_3x is due to the isospin breaking
part Hy = §(my — mgq)(tu — dd) of the QCD Hamiltonian. So, at leading order in
(my, — my), the decay amplitude is given by

My —

2

My,

Mg, B - — Mg, ; _
Ayyzn = ('at ' ou — ddln) = === (x'z" 7 []\qln).

Since the pions, having isospin I = 1, form an isotriplet, they transform under
isospin rotations according to the representation D!:

= Rikwk,

where R € O(3).

The behaviour of an operator gA™¢ under a transformation ¢ — Ugq, U € SU(3) is
g\ q — qUTA™Uq. In the case of pure isospin-rotations the matrix U is restricted
to matrices of the form (} ?) with V' € SU(2), and A™ € {A',A\*,\*}. From
(UTA'U) = (X) = 0 one concludes that UTA'U = R**A¥. Further we have:

(UINUUTNUY = (XNAFY = 267,
on the other hand
(UIXNUUTNU) = (RN RF™ ™) = 26 R* RF™
and so
R'R* = (RR")* =6" = RR"'=1.

Any isospin rotation can therefore be described through a matrix R € O(3). The
matrix element A, 3, is invariant under such a transformation which implies

(r*mw7¢|g\%q|n) = R R* Rl R™(rirk 7| gA™ q|n). (2.42)

Now consider a function f depending on the four three component vectors #, ¥,
Z and ¥. Suppose f to be invariant under transformation of its arguments by
any matrix R € O(3). In that case one may show that f only depends on scalar
products formed out of the four vectors. (E.g. we may, without loss of generality,
set 7 = (0,0,v) - so v> = ¥ - ¢. Similar reasoning for the components of the other
vectors leads to the desired statement.)

Set 2’ = R, y* = R¥, 2! = R and v = R™? and define

3
J@7EH = > @iyt iaintaliganyly),

ik,l,m=1

which is nothing else than the righthand side of equation (2.42). Performing a
second isospin rotation (by R) now amounts in a rotation of the arguments of f (by
RT) which is invariant under this operation. We may now write:

f(#,9,2,0) = A(@-§)(Z-0) + B(Z - 2)(§ - 9) + C(Z - 0)(§ - 2).

For the decay amplitude this means:

(m" ()" (52) 7' (F3)|[gA " a|n () = i(2m)*8* (p1 + p2 + ps — )
A(s, t,u)6" "™ + B(s, t,u)6" "™ + C(s, t,u)0"™ ", (2.43)

where s = (p1 + p2)?, t = (p2 + p3)? and u = (p3 + p1)*%.
The amplitude is invariant under simultaneous interchange of i with k£ and p; with
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2.7. Elliptic constraint

p2; that means of ¢ with u. Analogously one may interchange ¢ with [ or k with [.
Doing so, one finally concludes that B(s,t,u) = A(u,s,t) and C(s,t,u) = A(t,u, s).
So

<7T+(_’1)7{(_’2)7r0(53)|‘j)\3Q|77(ﬁn)> = i(27r)464 (pln _pout) /}(s,t,u), (244)
PO (B2)m° (33) g aln (7)) = i(2m)16" (Pin — Pour) Als, t, ),

with A(s,t,u) = A(s,t,u) + A(t,u,s) + A(u, s,t).

2.7 Quark mass ratios 7 and > and elliptic con-
straint

The expressions for the mass squares of the pseudoscalars found in equation (2.25)
imply the following first order relations for the quark masses:

2

2Bmy, = (mie+ — mieo) +mo,

QCD
2Bmg = (mio — m%H)QCD +m2,, (2.45)

2

2Bm, = (mics + m%(O)QC’D — Mgo-

Using the Dashen theorem, we may express this in terms of the physical masses and
find the leading order expressions

2

2 2 2
m — Mmoo +2ms, —m
Mu _Trer — Ko m Mt — 0,050 and

- 2 2 2
M Myt T Mo =My

2 2 2
mq  Mpo — My +M 4

T m2 2 2
Ms  Mpy T Mo =M,

=0.027. (2.46)

These are only estimates. To get results of higher accuracy one needs to take higher
order contributions into account and to use other pieces of information as e.g. the
ratio

2 2 2 2
1 _ Mg =My, Mg — My,
@ mioawe Y mE

which provides information in form of an elliptic constraint for the ratios ms/mq
and m,, /mgy:

m?2 1 m?2

—+ —=—=1. 247

The dispersive analysis of the decay n — 37 in principle allows one to get quite
precise knowledge of the numerical value of Q.

The following figure I took from [14]. It depicts the first quadrant of Leutwyler’s
ellipse (see equation (2.47)). The upper ellipse corresponds to Q = 24.2, the lower
one to ) = 21.5. The lines restrict the allowed region for the ratios ms/mg and
my/mg further. The dashed ones one gets from nn'-mixing and the boundaries
marked by the dotted lines are a consequence of baryon mass splittings, pw-mixing
and ['(¢' — ¢7%)/T(yp" — n). 1 didn’t look more closely at the arguments which
lead to the dashed and dotted boundaries.
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2.8. Elastic mw-scattering

Figure 2.1: The shaded region is the region for the ratios m,/mg4 and m,/mg4 not
excluded by the constraints mentioned in the text.

2.8 Elastic ww-scattering

2.8.1 Unitarity of the S matrix

The unitarity of the S matrix is crucial for the present work. Therefore I will give
a short summary thereof. The scattering matrix S is defined by

Si = (foulim) = (F 1 |9

i ). (2.48)

Since the probability of having any final state |f) when starting with initial state
|i) must be equal 1, we get the condition }_, | (f[S]i) |” = 1, where we either use
the in- or the out-states forming a complete set of orthonormal states.

D GISTIA(FIS]) = GilstSly =1 = Sts=1.
f

In an analogous way SST = 1 is shown. So S has to be unitary. For the T-matrix,
defined by S = 1 + ¢T" this implies

T -T"=4i1T". (2.49)
The T matrix elements are written as

(f i |Tli ) =i(2m)* 0" (ps — pi)Tys.

out

T

Assuming TP invariance of the occurring states, (fout|fin) = (fin|fout)* = (fout|fin),
we conclude Ty; = T;5. We write equation (2.49) in terms of T';:

i(2m)* 0% (pr — pi) (Tpi = Tf;) =i ( 254 (pr = Pu)0" (pn — pi)Tpn T,

For the elements 1'; the unitarity condition thus reads:

2
ImTy; = ™) 254 — p) Ty TE,. (2.50)
Note that the sum over n runs only over physical states |n).
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2.8. Elastic mw-scattering

2.8.2 Isospin decomposition

For further use we want to look more closely at elastic mw-scattering and at the
isospin structure of the scattering amplitude.

To start with, consider a rank two tensor v transforming under rotations according
to the representation D' ® D': v?* — R*RF™y!™  This tensor may be decomposed
into three parts, vy, v1 and vy, transforming according to D°, D' and D?, respec-
tively. vo must be proportional to 8%, v; has to be antisymmetric and v, is required
to be symmetric and traceless. These conditions may be satisfied by setting

U[i)k — (Lg) 5116 ,

ik _ 1 ik ki
U1 = 5 (U - v ) s

. 1 ) . .
U%k — 5 (,Uzk: + Uk:z) _ % 6zk )

Define projection operators P.""* | satisfying v} = PI"™ " yik:

Pém,ik — %(yk(slm ,
P1lm7zk — 5 (6zl6km _ 6zm6kl) , (251)
P5m7lk — 5 (6zl6km + 6zm6kl) _ gélkélm'

The so defined operators are real (hermitian) and fulfill P,"™"*P7*% = 5, , pm*,
as projection operators should. In the same way as for n — 37 we find that the
transition matrix element for elastic wm-scattering is of the form

<7Tl7rm|T|7ri,n.k> =3 (27T)45(pm . pOUt) Tlm,ik
=i (20)*8 (pin — Pour) (8™ 6F Ty + 616™F Ty + 5k 6™ Ty) .

Here and in the following the arguments of functions 77, etc. have been omitted.
Now apply the P;’s to two pion states |7'7*) and decompose them into total isospin
I=0, 1 and 2 contributions |rirk), = P}k’lm|7rl7rm). For T this yields

i (271')4(5(1)“1 - pout) Tk = Z J<7Tl7Tm|T|7Ti7Tk>I
1,J

= Y {(alw"|T|xixky, . (2.52)

T
We introduce the functions A% defined through:
1 {7 (p3) 7™ (pa)|T |7 (p1) 7" (p2) ), = i(27)*6(Pin. — Pout) AT (1, P2, D3, 1)
For A% we get the following expressions:

Al[m,ik — P[lm,tuPIik,Ts (6tu6TST1 + 6tT6uST2 + 6ts(5urT3) — P}m’ikA[.

where
Ay = 3Th+T5+ 1T,
A = T,-Ts, (2.53)
A2 = T2 + T3
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2.8. Elastic mw-scattering

For low energies, namely s < 16m?2, only two pion states contribute to ), in (2.50),
because no additional meson pair may be created. Due to parity it isn’t possible to
create only one additional pion. In the low energy region the states |n) may thus
be denoted by |7"(g1)m®(g2)). For the sum over intermediate states we then get

d’q d’go
Z Z /2q 273) 2¢9(2m)3

rsl

The factor 3 is needed because |7"(py)m* (p2)) = |7*(p2)7"(p1)) and we would like
to perform the sums over r and s independently of each other. The measure of the
integrals is the same, Lorentz invariant measure as the one occurring in the Fourier
decomposition of the field operator. We now make use of equation (2.50):

27r d*q d’q ;
Im 7'k = Z / P Zl 0 (pr+p2— @ — @) TTTHE
1 2

1 [dPq &g
= 54 — a1 —
642 / g E (p1+p2—q — @)X

T8

. ] ] *
(Pém,rsAO + ‘le,rsA1 + lem,rsAz) ~ (P[;“s,zkAO + Plrs,zkAl + Pgs,zkA2)

1 d3ql d
= 6 j— p—
642 / g (p1+p2—q1 — q2)%

(PgW"’“AOAg + Pk gAY 4 le""““AzA;)
= P™* Im Ay + PI™* Im A, + PI™% Im A,.

(2.54)

Restoring the arguments of the functions Ay this yields
Im Ay (p1,p2,ps,pa) = (2.55)

1 [(dq d’g
) /T 54(1’1 +p2—q1 — (Jz) AI(Qu(Jz;ps;pz;) A?(pupz;fh,(h)-
64m 495

To proceed further, we go over to the center of mass system: po = —p; and py = —p3.
The Dirac-6* function can then be written as §(v/s — ¢ — ¢9)6%(@1 — @) and thus
cancels the integral over go. Beside that, being onshell, ¢} = —¢ implies @ =q.

To evaluate the remaining integral, note that d%; = dQ dqq® = dQdq? ¢)q, where

* = |2 =
the scattering angle ¢ = Z(p1,q1). We define the following additional two angles:
Yo = £(P1,P3) and ¥ = Z(G1,p3). Equation (2.55) now becomes:

(q? —m ) The functions A; depend only on the total mass s and

@* —m2
Ja0dat VR S5 - 200) a(s.07) A3, 0).

1

Im A;(s,0) = 612

or evaluating the integral over ¢?:

1 — 4m?2
I Ay (s,00) = ez ot [A0 A 9) Aj(s,0). (250

For the A;’s we introduce the partial wave expansion:

o0

= > (20 + 1)Py(cos¥) g{ (s), (2.57)
=0
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2.8. Elastic mw-scattering

where Py denote the Legendre polynomials, for which the following relation holds:

4
20+ 1

/dQ Py(cos¥) Py (cos ') = 80 Py(cos o)

So equation (2.56) finally reads:

Z(% + 1) Py(cos 9)Im gf (s) =
¢

@ Y26+ 1)Pi(cos Do) g (s)g¢" (). (2:58)
4

Since the Py are linearly independent, one gets

VI AmE]S 1) gl (s),

Imgj (s) = e

which implies the following representation for the form factors gf :

2 oI
gr(s) = o sm (%) sin 67 (s). (2.59)

V1—4m2/s

Inserting this result into the expression for A;(s, ) we obtain

327 = i1 (s) -
Ar(s,9) = N ;(28 + 1) Py(cos )€ *) sin 6/ (s).

Now look again at the symmetry properties of the transition amplitude. The matrix
element

(! ()™ (50) | T (51)7" (7)) =
12 0(pout — pin) (P Ao(s,9) + PI™ ™ A1 (s,0) + ™ As(5,9))

is invariant under a simultaneous interchange of [ with m and p3 with py, which
means cost?y — —cost. Because Py(—cosd) = (—1)*Py(cos¥) and PIml’““ =
(—1)IP}m’“° only those contributions can survive with both, I and ¢, being odd
or both being even. If we restrict the sum over partial waves to S- and P-waves, we
are in the position to write down an approximation for 7% which will be made
use of in the next section:

] 32 .
Tlm”k(s,cosﬁ) — 7T { Im,ik

_ B[ plmik i) i g (s)+
VI—dmz/sU° o(s)
3cos 9P ™Hei01(9) gin 6, (s5) 4 PL™ % i92() 5in 6, (s) } (2.60)
8o = 85, 01 = 01 and 0y = 62 are the so called phase shifts.
At the present approximation the functions A; are given by

327

Aol ) = gy el
96w cos?¥ . 61 (s
Aot = s e 261
) )
As(s,9) = 377rsin(52(s)e“$2(s).

V1—4m2/s
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2.8. Elastic mw-scattering

2.8.3 Elastic ww-scattering to one loop in xPT

Although we are dealing with the decay n — 37 on these pages we want to consider
elastic mr-scattering to one loop, for the following reason: Starting with the matrix
element for the n-decay, we may transform the isospin quantum number of the
isospin breaking operator %(m, — mq)(r'm*n!|g\*q|n) to the fourth particle — we
get a w3 instead of the isosinglet 1. For kinematic reasons we have to push one
m from the out state to the in state. We may therefore consider the amplitude
7l (p1)m* (p2) — wl(p3)m™(p4) instead of the one for n — 37. For m = 3 the two
corresponding matrix elements will be of the same isospin structure. In the case of
elastic mm-scattering the Mandelstam variables become

s=(pL+p2)?, t=(p1—ps)° and w=(p—ps)’, s+t+u=4m].

The calculation will be presented rather detailed and can, maybe, serve as a sample.
Another advantage of considering elastic mm-scattering instead of n-decay is, that
it is sufficient to use an SU(2) x SU(2) effective chiral Lagrangian, which solely in-
volves pion fields — which all have the same mass within QCD. The small difference
induced by n7’-mixing shows up only in the SU(3) x SU(3) description. Consid-
ering the n-decay on the other hand would require an SU(3) x SU(3) Lagrangian
that gives rise to more diagrams and involves particles of different masses. A further
simplification is to consider the isospin symmetric limit with m, = my = m. This
way the whole quark mass dependence may be described through the square of the
bare pion mass m? = 2Brh.

In d = 4 dimensions the loop expansion is equivalent to an expansion in powers of
the momenta or inverse powers of 2, respectively. To get the one-loop amplitude
we therefore need to take into account all diagrams generated by E((j.f) up to and
including O(F~*) and all tree graphs associated with L’gf). To get rid of the infinities
caused by the one-loop integrals we will use dimensional regularization which is very
appropriate to xyPT.

It is favourable to perform the calculation in the octet basis — as already mentioned,
the mm-scattering amplitude is of the form

(' (p)m" (p2) | T | 7 (p3)m™ (pa)) = i(2m)*6* (p1 + p2 — ps — pa) ¥
(67 6!™ A(s, t,u) + 67" ™ A(t, u, ) + 0" 5 A(u, 5,1)) .

When extracting contributions to the four point functions it is therefore sufficient
to consider diagrams with i = k # [ = m. In the following calculation we will stick
toi =k =1and ]l = m = 2. As a check of the calculation you might evaluate
in addition the two diagrams with (k < [) and (k < m) as well as the diagram
belonging to (i = k =1 = m). The contribution from the latter has to be equal to
the sum of the first three. This holds separately for every diagram, irrespective of
the topology .

The O(p?) effective Lagrangian is given by:

F? .
) = 7 QU +m* (U +UY)) U= exp(i/ Fo).
Since we are within the SU(2) x SU(2) framework, we have
b= 3 mt —m?
“\ 7wl +in? -3 )
The O(p*) part of the effective Lagrangian is

£ = TV + 20U, (U0 UY) + F (V) + F (00D,

4
(2.62)
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2.8. Elastic mw-scattering

Performing a partial integration, the term (@LXT(?“U) may be replaced by

2
= (xX'OU) = (X'U) (0.U0"UT) = (o) + (xTU)”

All Feynman diagrams occurring in the present calculation are depicted in appendix

(A.3).

Retaining only terms ~ (71)*(72)”, the interaction Lagrangian responsible for the

treelevel contribution from E((j.f) becomes

. 2 : 1 : :
ngge = 1;nF2 (71'1271'22) + GF (26u71'17r16“7r27r2 - 8“71'16”71'171'22 — 71'128“71'26“71-2),

The non-derivative term gives rise to

2 2
m m
2X2X — = —
12F2  3F?’
where 2 X 2 is the corresponding combinatorical factor.
From the energy dependent part of £, we get

1
GE? (2% (p1 +p2) (s +pa) +2 X2 X p1p2 +2 X 2 X p3py) =

Summing up the two parts yields

~ s — ém,2T + Lim?
>-< = T(s) = TS (2.63)

In the pure treelevel calculation where the O(F~*) difference m2 — m? may be ne-
glected, equation (2.63) represents Weinberg’s formula for the elastic wm-scattering
amplitude. For 7i7? — 7ix? the treelevel approximation of the amplitude is energy
independent.

The terms in L’gf) proportional to I3 and [4 yield a contribution to the kinetic part
of the Lagrangian and thus contribute to the propagator. Including the tadpole
terms, the inverse propagator is then given by

A'(P2)1=< +—z— +—Q—>_1=m2+3(1’2)—1’2

2m? iA(0) ‘ 2m? 2iA(0)
— a2 2
=m <1+ 2(13+l4)+6 2>—p <1+—2 Iy + Ve ), (2.64)

where X (p2) denotes the self-energy. The renormalized field ¢" and the physical
mass m, are connected to the bare field and mass through

¢=VZ¢p,, and m2 =m? + ém?.

The physical mass is determined by the requirement that A’ (p?) has a pole at
p? =m?2 and Z is given by the residue of this pole:

1
2 _ 2 _
(5m =X (mﬂ.) and 7z = T(W‘Li) .
From equation (2.64) we thus get
2m* m? 2m? 2
2 _ . _ .
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2.8. Elastic mw-scattering

The singularity in dm? arising with A(0) can be absorbed in I3 by an appropriate
renormalization:

1
13 = lg +’}/3)\, Y3 = —5 , (266)

where A is defined in equation (A.4).
A(0) contains a term proportional to In ’ZZ—; referred to as a chiral logarithm (ylog).
This xlog can be hidden defining

=327 m?

li —Iln—. 2.67
Yi H ( )

The final result for m?2 then reads:

‘ 1 m? -

The external line insertions have two effects. Firstly they replace the the bare mass
in the external line factors by the physical one. Secondly the truncated one particle
irreducible four point function receives an additional factor Z?. At one-loop order,
this is only relevant for the treelevel contribution T'(s). All other corrections due
to field renormalization are of O (p®).

Next we consider the treelevel graphs generated by Egr). Their contribution to the
amplitude is

><: T1(s) + To(s,t,u) + T3 + Tu(s) =

2l L .
Tils—2m) 4 g (P (- w)?) +

4 4m2

8m

3F*

The term proportional to I3 together with T(s) (equation (2.63)), taking into ac-
count the field renormalization, yields, up to O(F~*),

2 2
2 o S—m 2m= | _
VA T(S) + 15 =27 - 72 + W ZA(O) = T(S) + Ry (8) + Dl(S), (270)
where
s —m? 4m? 4ds 5 1A(0)
T(S) = T Rl(S) = —F l4 . T(S) and Dl(s) = (-g + 2m > F4 .

The term R; (s) cancels the treelevel contribution T4 (s) and the scattering amplitude
gets independent of the low energy constant Iy as it should in view of (2.62).

Now we turn to the loops. The Feynman rule associated with the vertex X ,
keeping only terms O(F~?2), reads:
i

77 (6ik6lm (S _ m2) + 6zl6km (t _ mZ) + 6zm6kl (U _ mZ) ) .

From this we get the s-channel one-loop contribution from L((fﬂ):

. ddk/' 3 L L
DO = g [y 2 =K (07 =+ =) T
r,s=1

{6ik67’s (S _ mZ) + 6ir6ks ((pl _ k)Z _ mZ) + 6i56kr ((p2 _ k)l _ mZ) }X

{67'56lm (S _ mZ) + 6rl65m ((p3 _ k)Z _ mZ) + 67‘m65l ((p4 _ k)l _ mZ) }7
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2.8. Elastic mw-scattering

where we have omitted the ie-prescription in the internal line factors. Compared
to treelevel, we have one additional vertex and two internal lines, giving rise to a
factor i and i~2, respectively. This amounts to an overall factor of —i. The factor
% arises, because the symmetry factor associated with the internal lines is only 2
and not 4 as obtained by multiplying the expressions for the two vertices.

The formulas occurring at intermediate steps of the evaluation of the above forest
would be too long to be written down here — I will skip these. Summing over r
and s, we get contributions which all can be expressed in terms of the integrals
presented in appendix (A.2). This means that the analytic expression belonging to

can be expressed in terms of the one-loop function J(s).

Not only the s-channel provides terms proportional to §%%4'™, but also the t- and
u-channel. However, replacing s by ¢ (u) in the s-channel contribution proportional
to §Lgkm (5imk) is equal the §% 5™ contribution from the t-channel (u-channel).
Writing J(s) as J(s) + J(0) we get the contribution B(s,t,u) to A(s,t,u), which
includes all terms proportional to J:

B(s,t,u) = 6F4{3 (s> —=m*) J(s)+
(t(t —u) — 2m>t + 4mu — 2m*) J(t)+ (2.71)
(u(u —t) —2m*u+ 4m>t — 2m*) J(u )}

The remaining terms arising from (xx + crossed) proportional to §*§'™ we
collect in

é(s,t,u) = 6% {2 (s — 2m2)2 + (52 + (t — u)? ) —3m®* + 18sm” }J(O)+
288712F4 {1 (5 +(t— U)2) -2 (S — 2m2)2 +36m* + 18sm2} . (2.72)

The singular terms proportional to (s —2m/ ) and s? + (t —u)? amount to a renor-
malization of [; and [, respectively:

(2.73)

1 2
L=0+mA, la=I01+v\, where ’yl:§ and 7225.

The corresponding ylogs are again hidden according to (2.67). Adding C (s, ¢,u) and
the treelevel amplitudes T (s) and Ta(s,t,u) up to C(s,t,u) + D2(s) then yields

1 4 5
C(s,t,u):W{Q <l1—§> (s—2m2) +
<l_2 - g) (s 4+ (t —u)?) + 15m* — 125m2} , (2.74)

and

At the one-loop level the graph >< also needs to be taken into account. The
relevant part of the Lagrangian is

2
i (= T (6°) + (0606 6") ~ (0,090 9. 6°) +3 (0,6 6 9%) ).

2 =
Again it is sufficient to consider only the terms relevant for mi7! — 7272, The

contribution from this graph cancels the terms proportional to A(0) that have not
yet been removed by the renormalization procedure.
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2.8. Elastic mm-scattering

The total one-loop elastic mr-scattering amplitude, expressed in terms of the bare
mass and pion decay constant is then given by

A(s,t,u) =T(s) + B(s,t,u) + C(s,t,u). (2.75)

Now we work out the pion decay constant F to one-loop order. ng) gives rise to
additional contributions to the axial vector current, which becomes

2
Al = Ll — (o, Utl) + iy 5 (A {auU, Uth) (o,U0"UT) +

o, UT}> (0.U8,U") + UL (HU) (¢ (9,0, U1 (276)
At one-loop order, (0|A%|n’(p)) = ip,6*°F; picks up no contribution from I; or
l5, but l; and the one-loop term associated with Egr) do generate a contribution.

Further the leading order term receives a factor of v/Z. Graphically we may describe
this by the following sum of diagrams:

The corresponding analytic expression is

) m? iA(0) )
<0|AZ|7rb(p)> = ip, 0 F (1 + 72 ly + 7 > = ip, 6 F,.
We finally read off the necessary renormalization of I4:

ly =15+, v=2

At O (p4) the pion decay constant F} is thus given by

1 m?
F.=F (1 4+ — 1672 72 l4> . (2.77)

The amplitude A(s,t,u) may be written in terms of three functions depending on
a single variable:

A(s, t,u) = Ao(s) + (s — w) Ay (t) + (s — £) A (u) + Az (t) + As(u) — §A3(s) | (2.78)

with
Ao(s) = T(s) + 2 J;;;ST( )J( '+
2(s = 2m2)2 (h—35) + (25 = 3sm?) (I — §) + 15m* —12m’s
dm? (z —§)967T2F4 (2.79)
_ S am” & s >
Ai(s) oFt s) o021
aa(e) = U2 iy 2o ) ()

19272 F4
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2.9. The xPT one-loop result for n — 3«

2.9 The xPT one-loop result for n — 37

Since the xPT one-loop result for  — 37 will be used to determine the subtraction
constants in the dispersive analysis of the n-decay, I will quote it in this section. I
have merely gathered the formulas presented in ref. [6] and [7].

It is convenient to extract a normalization factor:

1 m2 (m3 —m?2)
A(s,t,u) = Qzlt;\/_l(WM(s,t,u),
1 m? —m?
T mzoae (2:80)

The normalization factor is chosen such that the current algebra result,

M(s,t,u) = T(s) = 1 + 3——2_
n m

is equal to 1 at the center of the Dalitz plot (s = so).
Like the wm-amplitude, M (s, t,u) may be represented by three functions depending
on a single variable:

M (s,t,u) = Mo(s)+(s—u)My(t)+(s—t)M, (u)+M2(t)+M2(u)—§M2(s). (2.81)

The index labels the isospin quantum number of the corresponding partial wave.
The functions M;(s) are given by:

Mo(s) =T(s) + %Ao(s) (3+2T(s)) + As(s) + %Az(s) (3-T(s))+

V(s) + %AGMOT( )+ ;L (AFT(s) — Acmo),
(2.82)
— 3
00 = gy (240~ 3770

My(s) = %Az(s) 3-T(s)).

The coupling constant Lz is Ly = (—3.5 £ 1.1) - 1072 and the quantities Ap and
Agmo are given by

F 4m3, —3m2 —m?2
Ap=-E_1=2022, Aguo=—X U =0.21.
F, m2 —m2
For further use we introduce the abbreviations Apg = m% — mZQ and ¥pg =

m3 + mZQ, where P and ) denote one of the particles m, n or K. The functions
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2.9. The xPT one-loop result for n — 37

A;(s) are expressed in terms of the renormalized loop integrals Jp (s) and Mpp(s):

1 p T
AO(S) 2F2 (28 - fr) Jﬂ'ﬂ'(s)7
28 r 1 T
A1) = 35 (M2 + M)
Ao(s) = —— 2m?2) Jr L (35 — 4m%) Jp D T
2(8) - _ﬁ (8_ mﬂ') 7T7I'(8)+@ ( § = mK) KK( ) 3F2 ( )
1
Az(s) = —————— (5 — 2m?2) (35 — 4m%) JI_(s)
sz (5= 2m2) (35— dm)
s (3s — 4m2) m2 )
N S VA _m —4 r
4F2An7r KK(S) + 3F7$An7r (35 mﬂ') Jﬂ'n(s)
m2 r 3s 3s—4m3 [ . - 1
2FZ ( ) — @W <JKK(5) — Jkk(0) — @) .

(2.83)

Jpg and Mpp are of the same nature as the loop integral J(s) encountered in the
elastic mr-scattering calculation — they just get more complicated because of the
different masses occurring. Jpg and Mpp take the form:

Tpq(s) = Jpq(s) - 2kPQ;
. 1
Mpp(s) = 135 (s —4mp) Jpp(s) — 6kpp + e (2.84)
with
A 1 mpIn (mp/p?) —mgIn (md/u?)
3271'2 APQ ’
_ ]_ APQ EPQ 124 (S + l/)2 — A2
J = 2 _zPe ) e Y vy T a0
Pa(s) 3272 { * < s Apg mfg s (s —v)2—A2 ("
Vo= {s—(mp+mQ)2}{s—(mp—mQ)2}. (2.85)
In the case where mp = mg = m these quantities take simpler forms:
1 2
= — 1 1
ke 32m? (n i )
- 1 oc—1
J = 1 2
pe(s) 167r2<0n0+1+>’
s —4m?
o = .
s
The function V(s) is given by
V(s) =T(s) (a1 + 3a2Ayr + as (9m —m2)) + aa,
2
“ = SA m2 (—pr — 20K + 3pty)
_ 2 2 2
az = 3A%ﬂ' (_mﬂp‘ﬂ' +4mKNK - 3mq“’7) ’ (286)
1 2
=——— 1 1
4 = 19872 F2 (n 2t )
. ‘ 3m? m?2 m?
_ 2 2 T L K
as = —8mias — 12mxas + 3272 2 <1 — m%( ~m2 In m—%> .
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2.10. Implications of unitarity

The renormalization scale dependent quantities pup are the ylogs

1 >, Mp

up
Except for the terms proportional to Ap, Agapo and L3 as well as for the treelevel
contribution, the one loop formula is accurate only to leading order in the quark
mass expansion. At leading order the meson masses satisfy the Gell-Mann-Okubo
relation (equation (2.29)). The final result is then independent of the renormaliza-
tion scale u. Putting all pieces together, we get the following plot for the amplitude
M (s,t,u) along the line s = u:

3

2.5
& 2
o
N
| 1.5
(=)
co%
- 1
W
2
= _
0.5 _—
//
0 >/
0 2 4 8 10
2
s[m2]

Figure 2.2: One-loop xPT result of M(s,t,u) along the line s = u. The full line
is the real part, the dashed one represents the imaginary part and the dotted line
depicts the current algebra prediction T'(s).

2.10 Implications of unitarity

Consider the transition amplitude A,=A,_,,, where the final state is a three-pion
state denoted by |nout). Ay is given by (nout|L]n). In view of (nout|LIn) = (nin|L|n)*
we get for the imaginary part ofA,:

Ay = o Ol hn) — Gualclo) )
= 55 2 { ol o £ = (i) 1)
= 5 {Bun — (bt} A (2388)
= 5 I{am,_(ngut|nm>*},4n,
= 2% I{6nnr—(5nn/+i(27r)454(pn—Pn’)Tn’n)*}An’
_ % {@n)'64(bn — pu) T } A
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2.10. Implications of unitarity

For the decay n — 3w the sum over the intermediate states n' runs only over
states containing three pions, as long as we are in the physical region. This is due
to energy-momentum conservation. Especially there will be no other 7 involved
than the incoming one. Virtual transitions, such as G, contribute to the self-
energy of the 5 and are incorporated in the physical mass my. The above unitarity
condition thus reduces to a linear constraint of the amplitude A4,,. We are therefore
allowed to extract a normalization factor:

1 m3.(m3% —m?)

A(s,t,u) = ————72———T-M(s,t,u),

(5,8, ) i M)
1 m?% —m?
o = P _m;‘, (2.89)

Chiral perturbation theory shows that, up to and including two loops, the low energy
amplitude is dominated by two-body collision finalstate interactions, described by
elastic wm-scattering, which, in this region, only occurs in the S- and P-waves. In
the following we assume that the amplitude can by described in the same way as
the one-loop result from yPT:

M(s,t,u) = Mo(s)+ (s —w) My (£) + (s — ) My (w) + Ma () + Mo () — §M2(s). (2.90)

An analogous representation is valid at two loop order of xPT ([17]).
We return to the general case n — 7 (py)7* (92) 7! (§3) and use

M““l(s,t,u) = 6ik5l3M(s,t,u) + 5kl5i3M(t,u, s)+ (5li(5k3M(u, s, t). (2.91)

The unitarity condition in terms of M now reads:

, 1
Im Mzkl(&t,u)‘d - 5 2(27‘-)46(1)71 - pn’)T;’nMn"

n'

M#*! denotes the amplitude for n— wirkxl M, and T, the one for n — n and
n — n', respectively. Restricting the final state interaction to two-body collisions,
T, is given by the functions Ttk The sum over the intermediate states n' then
yields the same sum as already met in the partial wave expansion:

dpa pb
Z Z /2p (2m3) 2p2(2m)3

a’7

We get

. 1 3 d3 d3pb
ikl _ a 2o
Im M (s,t,u)‘d—4(27r)2 Z/

S 2w
{T*ab,ik(s,f)s) M (s, u') 8(pa + Py — p1 — p2)
FTR (¢ 9,) M (st u') 8 (pa + Py — P2 — p3)
+T*ab,zl(u7,0u) Ma’“b(s ' u)6(pe + pyp — p3 — p1)}-

The three contributions in braces stem from the different possibilities of having one
pion being a spectator not taking part in the final state interaction. The subscript
d indicates that only the disconnected part has been considered and the angles ¥,
¥ and ¥, denote the scattering angles in the corresponding channel.

We leave now the case where i, k and [ are arbitrary and turn to n — 7tz 7Y,
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2.10. Implications of unitarity

The fact that M+70 = M113 yields some simplification: we may choose i = k =1,
[ = 3. The above equation then becomes

dpa ab,11 ab3 (g 4t o1
Im M (s,t,u) ‘d 6471'2 Z/ T* (s,05) M (s,t",u’)

+ TP (8,9, ) M (st u) + T3 (w9, ) MM ('t u)}- (2.92)

It is favorable to evaluate each of the three contributions in the CMS of the cor-
responding two particles undergoing a scattering. Let’s stick to the case where 7°
is a spectator and evaluate the first term. Without loss of generality, we may then
choose the angle ¢ appearing in [dQ... = OZﬁdgo filldcosél ... to denote the angle
between p3 and p, .

For further use let’s find the CMS-expression for the Mandelstam variables ¢ and
w in terms of s and ¥y = Z(P1,P3). In the CMS of particle one and two we find:

s =4p°% and t = 2m?2 + p°pY + 2 cos vy |7 |P3], respectively, where p® = p$ = pf.

Energy and momentum conservation implies (p1 + po +p3)2 = m% and we get
Py = zf (m2 —m2 — s). This finally leads to the relations

t(s,cos ) :% (3s0 — 5+ cos ¥y K(s)),
1
2

u(s, cosy) == (3sp — s — cos ¥ K(s)), (2.93)

9= (g tm - s} {omg - me -5} 2oy

Analogous expressions hold for the other channels. M(s,t',u) thus depends only
on s and on the integration variable cosd. Also the angles J;, ¥; and 9, may be
expressed through s, ¢, v and 6. Therefore the integrals can be evaluated in the
same way as in section (2.8.2). What remains is an integral over the space angle 2.
Inserting equation (2.91) for M*! and using expression (2.60) found for T'™*  one
can now start evaluating all the Kronecker-§ products and sums and gets the fol-
lowing three contributions to Im M (s, t,u):

where

e 7T~ final state interaction, s fixed:

*xab,11 ab3 P
128W2’/ /dQZT (5,95) M3 (s, u') =

a,b=1
1

Ar

o = { [BM (s, t',u’) + M(t',u',8) + M(u',s5,t') ] e %) sin by (s)
— [M@,s,t") + M(t',u',s)]e %) sin 62(3)}. (2.95)

e 770 final state interaction, t fixed:

/dQ Z T3 (¢, 9,) ML (st u') =

a,b=1

\/ t—4m2 /dQ 3cost9 [M (', s',t) = M(s',t,u')]e * @ sin & (t)
12871'2 t ) by 1

+ [M(!, s, t) + M(s', t,u') | e 020 sinéz(t)}. (2.96)
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2.10. Implications of unitarity

e 7170 final state interaction, u fixed:

1 *ab,13 alb ! _
g dQE:lT (u, ) M (s ' u) =

dmz 1o —01(u) o
1287T2\/7 /dQ 3(:0519 [ (', u,s")— M(s,t,u)]e sin 0y (u)

+ [M(#,u,8") + M(s', ', u)]e~02() sin62(u)}. (2.97)

We have evaluated the three contributions in different frames. Since they are
Lorentz invariant this procedure causes no problem and summing them up will
yield the right hand side of equation (2.92). Unitarity has led us to a representa-
tion of Im M (s, t,u) which exclusively involves the function M (s, t,w) itself and the
phase shifts §;(s) describing elastic nm-scattering. Inserting (2.90) for M (s, t,u) we
can write the right hand side of (2.92) in the form

Fo(s) + (s —u)Fi(t) + (s — t) Fi(u) + F(t) + Fa(u) — ng(s)

Identifying corresponding terms on each side, we find expressions relating the func-
tions Mo(s), Mi(s) and Mz(s) among themselves. For I =0 e.g. we get

1 .
Im M[)(S)‘d = Fy(s) = o /dQ e~90(%) sin §y (s)

{Mo(s) + ;Mo(t’) + ;(s — WML () + ;(s )My (u') + 290M2( )} . (2.98)

In the following we will write z instead of cos¥ for simplicity. Replacing (s —u') by
(25 — 3sp +t') and (s — t') by (2s — 3sp + u') in (2.98) and making use of

1) = /1d f(M) and /sz"f(t’):(—1)”/sz”f(u’),

Im Mo(s)‘d may be expressed in terms of angular averages of the form

(=" f)(s) = % /_1le o (M) . (2.99)

This reasoning holds also for I = 1 and I = 2. The imaginary parts of M/(s) can
be represented in the following way:

Tm M;(s) ‘d - {M,(s) + M,(s)} e~ 01(5) sin 6, (s). (2.100)

The inhomogenities M;(s) are

~ 2 20 2
MO :§<M[)> + 2(8 — S[))<M1> 9 <M2> + 3H<ZM2>
L1 9 3
M1 :E {3<ZM[)> + 5(8 — 80)<ZM1> — 5<ZM2> + §I€<Z2Mz>} y (2101)
3 1 1
Mj =(Mo) — 5 (8 = 50)(M1)(s) + 5 (M) — 5r(2M),
where the arguments of (Mj)(s), ... have been omitted for simplicity.
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2.11. Unitarity constraint and the one-loop xPT result

2.11 Unitarity constraint and the one-loop xPT
result

In order to get some confidence in the relations between the functions M(s) and
their imaginary parts found in the last section, it is a good idea to check whether
they are indeed satisfied by the yPT one-loop result.

Let us first calculate the treelevel expressions for the phase shifts. The current
algebra result for the transition amplitude 7¢(py)7*(ps) — 7' (p3)7™ (pg) is

T7T7I'(S7I'ﬂ'7 tﬂ'7r7 u7rﬂ') = 6ik6lmT1 (Sﬂ'ﬂ') + 6”6ka2 (t7l'7T) + 6im6le3 (uﬁﬂ')J

where T (sqr) = s”I:Zmi s To(tnn) = Ti(trr), T5(trr) = T1(urr). We have used
the subscript 77 in order to distinguish the Mandelstam variables of nm7-scattering
from those of the decay n — 3.

From equations (2.53) and (2.61) we find, approximating sind - exp(id) by 9,

siree(s) = 7% (25 - mfr) +0 (p4)

B 32mF?
V1 —4m2
(ﬁree(s) = %T’rn;r/s (S — 4m,27) +0 (p4) (2]‘02)

6;ree(s) — @ (s — 2m,27) +0 (p4) .

- 32nF?

We have used $;r + trr + Upr = 4m2 and trn — Uy = (Spnx — 4m2) cos /2.

At treelevel the amplitudes describing the decay n — 37 are: M{™®(s) = T'(s) =
(35 —4mZ2)/(m2 —m2), M{***(s) = M3**(s) = 0. To get Mree(s) we thus only
need to know the angular averages (T')(s) and (zT)(s):

3—-T(s) K(s)
T =— " T = ——"—. 2.1
D) =520 D6 =500 o (2:103)
This yields, in view of equation(2.101):
- 3—-T(s)
Mtree _
0 3 ’
Npree = 3 (2.104)
! 2 (m2 —m2)
- 3—-T(s)
Mtree — .
2 2
In terms of the treelevel expressions the unitarity constraint (2.100) reads
Im M;(s) = {M}ree(s) + M}ree(s)}ayee(s) +0 (). (2.105)

So this equation should be satisfied when inserting the one-loop result (Mo, M,
M) on its left hand side. Using the explicit treelevel expressions (2.102) and (2.104)
we get

() = a5(s) 22D o)
Im M1 (S) = 611;ree(s) m + 0 (p6) , (2106)
Im Ma(s) = o6ve(s) 3_TT(S) Lo .
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2.12. Discontinuities, imaginary parts and integration paths

Indeed, the quantities Im M(s), given by the one-loop result for  — 37 presented
in section 2.9, yield the right hand sides of equation (2.106).
This relation holds also to next order:

Im M2—100p(8) — Ml—lOOp(S)+M1—100p(S) %
! { ! o } (2.107)
e 0O gin 6171 (5) + O (%) .

2.12 Discontinuities, imaginary parts and integra-
tion paths

As noted above, we have taken into account only the disconnected part of the
T-matrix to determine the discontinuity of My(s). Clearly there arises also a con-
tribution due to the connected part:

Im M, (s) = Im M;(s) |¢ +Im M;(s)|. .

The result for the discontinuity derived in section 2.10 agrees with the one-loop
formula of chiral perturbation theory — considering a connected contribution to
the T-matrix, arising by successive two-body collisions among different pairs of
pions, would automatically give rise to two or more loops. At higher orders of the
expansion the decay amplitude becomes complex and the angular averages M 1(s)
will do so, too. Here we are running into a problem:

Im (e*ImM) = sin § ImM =Im (sina(M + M)) = sin §(ImM + ImAT)
= ImM = 0.

It is therefore not only an approximation, it is inconsistent with unitarity to sim-
ply drop the connected part of the T-matrix. What can be done? Consider again
elastic wm-scattering. Once more, we ignore partial waves with ¢ > 2. The scatter-
ing amplitude for this problem has the same structure as A,_3,. This is plausible
when replacing the 1 by a pion and transferring the isospin quantum numbers of
the operator %(mu — mg)@\3q to the fourth particle, which must be a 7° then.
There is one important simplification compared to n — 37: in the definition of k(s)
we have to replace m, by m, and so k(s) = (4m2 — s). Therefore the quantity
3 50— 1s+32k(s) becomes equal to 1 (4m? —s)(1—z). When calculating the angular
averages, one only meets values of M; lying on the negative axis — i.e. we get only
real contributions. So, in the case of elastic mm-scattering, it is consistent with uni-
tarity to drop the connected contribution and to put ImM (s, t,u) = ImM (s,t,u) |q
(extended elastic unitarity). The fact that we do not meet an inconsistency in the
case of elastic mm-scattering points a way to resolve the problem occurring in n— 37
decay: We make use of analytic continuation in the masses of the particles, namely
the n. This means, we replace m, by m, and start by putting the mass m, = my,
where we clearly know what we’re doing. Consider the amplitude as a function of
my, and extend the latter to other, also complex values, different from m.

The functions M;(s) are equipped with a cut starting at 4m?2 and running along
the real axis to co. The physical values are to be found on the upper rim of the
cut. This cut is responsible for a second problem. Turning back to our equations
for the M;(s)’s in the case m, = m, we see that, z running from -1 to +1, the
argument %so - %s - %zra(s) intersects the cut for certain values of s. So we have
to deform the integration path in such a way that it stays away from the cut. In
the followinglﬁgurfs the real and imaginary parts of sy = 259 — +5 + £x(s) and

5. = %so — 15 — $£(s) are shown in units of m2. This makes it easy to read off
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2.12. Discontinuities, imaginary parts and integration paths

which integration paths are tending to run across the forbidden cut. The original
paths are straight lines with endpoints s_ and s..

10 10
8
5
6
+ |
wn w 4
o 0 Q
x o=
5 0
) \K

-10
0

5 10 15 9 20 25 30 0 5 10 15 9 20 25 30
s [mz] s [m7]
(a) Real part of sy (b) Real part of s_
5 0
4 1
3 I -
5 w 2
>—|E 2 l—Ec -3
1 -4
0
0 5 10 152 20 25 30 0 5 10 152 20 25 30
s [m7] s [mz]
(c) Imaginary part of sy (d) Imaginary part of s_

Figure 2.3: Real and imaginary parts of the endpoints of the integration path.

We make the following observations for the physical values of s (s > 4m?2):

e If s > (m,; +m;,)* both, s; and s_, are real and less than 4m?2 — no problem
in choosing an appropriate integration path is encountered: we may just follow
the straight line connecting the two endpoints.

e For values of s between (m, —m,)? and (m, + m,)? the endpoints s; and
s_ become complex. As long as s is above m% — 5m? the real parts are less
than 4m? and the path avoids the cut. But as soon as s falls below this value,
the straight line between s; and s_ hits the cut (s; lies in the upper and
s_ in the lower half-plane) — the inconsistency arising from neglecting the
connected part shows up here. We are forced now to deform the integration
path. E.g. one may start at s_, follow a vertical line approaching the lower
rim, then turn to the left, advance towards the start point of the cut, encircle
it and go back to the right, this time on the upper rim. For the last part of
the track again move along a vertical line leading from the upper rim to s.

e Approaching s = (m, —m;)?, the endpoints move close to each other to meet
on the cut. It is important to note here, that they still lie on opposite rims of
the cut, so that in the interval 1(m? —m?2) < s < (m, — m)?, where £(s) is

n
real, we still have to do the whole trip described above. At s = §(m2 —m2)
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2.13. Integral equations

s_ becomes equal to 4m? and moves on the upper half-plane. From now on,
the integration path is given by a horizontal line on the upper rim of the cut.

For real endpoints bigger than 4m?, the problem to determine on which side of the
cut they are situated occurs. The solution is given by equipping the n mass with
a small positive imaginary part: m, — m, + id. Doing so, s; and s_ show the
behaviour discussed above. When continuing the values of s into the unphysical
region (s < 4m?), the shape of the cut must be deformed — but this won’t bother
us. The complex m,, has the general effect of keeping the endpoints away from the
cut. Note that the angular averages are taken over the values of M/(s) on the upper
rim of the cut.

2.13 Integral equations

In this section we want to discuss how to solve the relations between My, M; and
M> we have found from the unitarity condition. The discontinuities of the functions
M7y are

disc M;(s) = 0(s — 4mfr){MI(s) + M,(s)} sin 7 (s)e =07 (). (2.108)

On the right hand side it is understood to take the values on the upper rim of the
cut: M(s) = M(s + i€), M(s) = M(s + ie).

To start consider a function m(s) being analytic except for a cut along the real axis
starting at 4m?2. Assume m(s) to remain finite as s — oo and that the discontinuity

across the the cut is given by
discm(s) = 6(s — 4m2) m(s) sind(s)e ") (2.109)

where the phase d(s) is supposed to be known.
The homogeneous equation, written in terms of m(s), reads

m(s + i€) — m(s — ie)

5 = 0(s — 4m2) m(s + i€) sind(s)e "9
i

which yields 4
m(s + ie) = €20 m(s — ie).

Taking the logarithm on each side, this leads to
disc In (m(s)) = 6(s) (s — 4m?2).

We may now apply the Cauchy integral representation discussed in appendix A.4
to this equation. Assuming that J(s) remains finite as s — oo, we get

s [ In m(s" +ie) — lnm(s" — ie) s [ o(s")
1 = - ds' = - — ds'.
nm(z) p+2i7r s'(s' — z) y p+7r / s'(s' — z) y
4m3 4m2
Setting p = 0 we find the function
. s [ s
4m?2

referred to as the Omnes function, which is normalized to ©(0) = 1. |Q(s)| is
continuous and the phase above and below the cut is given by exp(id) and exp(—id),
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2.13. Integral equations

respectively. Besides that, {2(s) has got no zeros, so that Q(s) = m(s)/Q(s) is an
entire function.

We might argue from the above expression for lnm(z) that m(s) has to be of the
form m(s) = ¢-€Q(s). In general this needs not to be true, as we are going to show
now.

Assume that the phase shift ¢ is equal to zero at s = 4m?2, rises to am at s = A?
and stays there for larger s. In the case where « is integer, the cut is only present
for 4m2 < s < A%, For s > A% we may evaluate the integral over the phase shift:
Jis = fﬁ; + [y The first integral tends to —L fﬁ; 40(5) a5 5 — o0, whereas
the the second one becomes "

s Oods’é(s’) B i , 1 1\ A% —s
;/m—a/ds g 5) " ol )
A2 A2

The asymptotic behaviour of Q(s) is therefore determined by «:

O(s) < (%)a (2.111)

The notation f(x) < g(x) means that f(x) is asymptotically equal to g(z).

We conclude that Q(s) doesn’t grow faster than s%, because we required m(s) to
stay finite in the limit s — oo.

Since the condition discm(s) = 6(s —4m2) m(s+ie)sind(s)e is linear in m(s),
multiplying Q(s) by any entire function f(z) will yield a solution to the homogeneous
equation. m(s) must therefore be of the form

—id(s)

m(s) = Q(s) Zcisi with n < a.

We now turn back to the inhomogeneous equation and assume M (s) to be given.
Consider again the function Q(s) = M (s)/(s) and its discontinuity (we leave the
factor 6(s — 4m?2) implicit):

M(s +ie)  M(s —1ie)
2iQ(s +ie)  2iQ(s — ie)
M (s +ie)e 0) — M(s —ie)et®(®)
2i|Q(s)|
e disc M (s)  sind(s)M(s)
R 120)]
sin 6(s)M (s)

= TG -0(s — 4m7).

disc Q(s)

Invoking the the Cauchy integral representaion for Q(s) we get:

s" [ sin 5(s")M(s'
T [Q(s")|s"" (s —
4 2

™

) a5 + P(z), (2.112)

Q) = 5

where P(x) is a subtraction polynomial of order n — 1. Requiring M (s, t,u) to grow
at most linearly in all directions as s, t, u — oo implies:
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2.13. Integral equations

The number of required subtractions is then determined by the asymptotic be-
haviour of the Omnes factors. If one uses a parametrisation of the phase shifts in
such a way that dp(s) and d; (s) tend to 7 for s — oo and d2(s) asymptotically tends
to zero, the subtraction polynomials must be:

Py(s) = g + Bos + 7087,
Py(s) = a1 + Bis,
Py (s) = a2 + Bas.

A term 7282 in P(s) would give the wrong asymptotic behaviour of Ms(s) as
|s| = oo — therefore v2 = 0. Three of the seven subtraction constants may be
eliminated by the observation that the decomposition of the function M(s,t,u) into
the three components My(s), M1 (s) and Ms(s) is not unique. The transformation

4 5
Mo(s) — Mo(s)+3cl(s—so)+§c2+c3 <350_§5>7

Ml(S) — Ml(S) +cy, (2113)
Ms(s) — Ms(s) +co +c3s

yields the same total amplitude. This allows us to set a; = ay = 2 = 0. The four
remaining subtraction constants may be determined with the aid of the one-loop
result. The discussion thereof follows later.

We finally get the following form of the dispersion integrals:

2 T ds' sing (s")Mo(s")
Mo(s) = 9 2y / o
o(s) 0(s) | ao + Bos + y0s” + p 2 [ (s (5" — 5 — ie)

4m?2

s [ ds sin &y (s') My (s')
M = 0 — — 2.114
1(5) 1(%) ﬁls+7r/ s ()] (s" — s — ie) ( )
2 [ ds sin 85 (s') M (s")

Ma(s) = Mo(s) > | & -
N o=

™

This set of coupled integral equations is to be solved numerically. The numerics is
described in chapter 3.

We have introduced the Omnes functions and formulated the dispersion relation for
Q(s) = M(s)/Q(s) (equation(2.112)). This seems to be a detour. Why not write
down the relation

el 1 o—i6(s") ' (!
M(s) = s [ds'sind(s")e {M(s") +M(s")} ve (2.115)
T s! s'—s
4m2

which follows directly from the unitarity constraint, and solve this equation itera-
tively? (We have assumed M = O(1) for |s| — o0.) Let us remember the solution
to the homogeneous equation. In the case where the phase shift ¢ asymptotically
approaches m, we have found m(s) to be of the form m(s) = (¢p + ¢18)2(s). This
solution involves two constants to be determined. The corresponding dispersion
relation, however, contains only one free constant, which fixes the value of m(s)
at the origin: m(0) = ¢p. The parameter ¢; remains free. This problem occurs
also in the case of the inhomogeneous equation (2.115) — an attempt to solve it
iteratively is doomed to failure. Removing the first term in the unitarity condition
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2.14. Determination of the subtraction constants

disc M = sin 6e*i‘5{M + M} by introducing @, resolves the problem of ambiguity.
Assuming the inhomogenities in (2.114) to be known, the iteration process will con-
verge. The numerical results indicate that this is also true when the inhomogenities
depend on the functions My and thus the three equations (2.114) get coupled.
Next we will consider how to determine the subtraction constants and the repre-
sentation of the phase shifts.

2.14 Determination of the subtraction constants

The subtraction constants are determined by matching the dispersive result to the
xPT one-loop amplitude.

We have a certain freedom determining the number of subtraction constants. mm-
scattering indicates that two subtraction should be sufficient — the chiral perturba-
tion series for 7 — 3x thus leads to an oversubtracted form. However, using only two
subtractions would require to look closer at the contributions above K K-threshold.
On the other hand, introducing too many subtractions will just reproduce the one
loop result, when using this one to fix the subtraction constants. As already men-
tioned in section 2.13, the number of subtractions may be fixed by the requirement
that M (s,t,u) grows at most linearly in all directions as s, t, u — 0o — we have to
determine four subtraction constants.

In the limit m, = mg = 0 the amplitude exhibits two Adler zeros, one at p,+ = 0
and the other at p,—- = 0. This corresponds to s = u = 0 and s =t = 0, respec-
tively. The Adler zeros are a consequence of SU(2) g x SU(2) symmetry and do not
rely on the expansion in mg. In the case of a vanishing pion mass m,, the treelevel
prediction for the amplitude vanishes along the line s = 0. Higher order terms will
generate an imaginary part and distort the line Re M (s,t,u) = 0. However, if the
quark masses m, and mg vanish, this line still passes through the two Adler zeros
specified above.

If we turn on the quark masses, a curve along which the real part of the amplitude
vanishes is still present, but shifted away from the points s =u =0 and s =¢ = 0.
This shift, however, is an O(m,,, my) effect. Higher order contributions will change
the shape of the curve only slightly in the vicinity of the points s = u = 0 and
s=1t=0.

The line described by u = s, t = 3s9 — 2s intersects the curve of vanishing real part
at some point. At leading order, this happens at s = s4 = %mi. The one-loop
corrections shift this point up to s4 = 1.41m2. Due to the above arguments we
may assume that higher order corrections won’t affect the position of the intersec-
tion significantly any more. This is confirmed by the fact that already the leading
correction to the treelevel prediction of s 4 is of about only 6%. The current algebra
and the one-loop results are very close to each other in the vicinity of the Adler
zero — the slope differs by less than a percent. (Note, that the slope, however, is
not protected by SU(2) x SU(2) symmetry.)

For these reasons we assume the one-loop prediction to be reliable in the vicinity of
s = sa, and require the first two terms of the Taylor series of M (s,t,u) around s4
to agree with those of M(s,t,u) along the line s = u:

M(s,3s0 — 25,8) = Ma + (s —54)Sa+ O ((s — s54)?) . (2.116)
My and S4 are given by
Ma=—000411 ,  Sa=(0.1957 — 0.05191)m 2. (2.117)

This fixes the two subtraction constants ag and (y. After each iteration step cor-
rections to ag and fy are calculated such, that equation (2.116) is satisfied.
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2.14. Determination of the subtraction constants

To fix 1 and o we first look at the dispersion relations satisfied by the one-loop re-
sult. For s — 0o, Mo(s), M1(s) and M(s) show the following asyptotic behaviour:

— 1 s?lns — os?

Mol$) = =3 Tom2F2 (mz —m2)

— 3 slns—os—s(4Ls + 1/647%)

Mu(s) = — 8 1672 F2 (m2 — m2) ’ (2.118)
_ 3 s?Ins — os?

Ms(s) = +§ 1672 F2 (m%—mz) ’

where o0 =Inp? + 1 4ir. o
From this we conclude that M(s) and M»(s) obey a dispersion relation with three
subtractions, while two subtractions are sufficient for M (s):

M, ds' Im M
Mo(s) =ao + bos + cos” +_/ 31,1170()7
e
4m?2
M ds' Im M, (s
Mls) = bis+ 2.119
(s) =ar +bis+ /__ .119)
4m2
5 T ds' Tm Mo(s'
Mz(5)=a2+b25+0232+8_/_53m72(5')‘
m S’ SI—S—'Le

2
4m?2

From equation (2.118) we find for the two combinations Mo(s) + 2M>(s) and
sMy(s) + Mx(s):

B i o — . _ 5 —AL;+1/647°
Mofs) + gMa(s) < Ofshns) and - sMa(s) + Mals) = 5 00—y

(2.120)
If the dispersive representations (2.119) shall reproduce the asymptotic behaviour of
these two combinations, the terms O(s?) arising from the subtraction polynomials
must be compensated by those from the dispersion integrals. We conclude

4 1 [ds 4

co+—c2:—/ = Mo (s') + - Tm Mo(s)) (2.121)
3 ™ s’ 3

4m?2
and
AL; —1/647% 1 [ ds' _
b1+c2:—m+; /S {SIli( )+ImM2(s')}. (2.122)
n T T

2
4m?2

When establishing the integral equations for the functions Mj(s), we have found
that they are determined only up to a polynomial (see (2.113)). This allowed us
to eliminate three of seven subtraction constants. Using the representation (2.119),
M (s,t,u) receives two pieces; one collecting the dispersion integrals, the other one
being a combination of the subtraction polynomials, which is of the form P(s,t,u) =
a+bs+es®>—d (32 + 2tu), where ¢ = ¢y + %cz and d = ¢p + c3. To get this form
of P(s,t,u) one makes use of s + ¢+ u = 3sg. Thus also in the case of the one-
loop result only four combinations of the eight subtraction constants are of physical
significance.
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2.14. Determination of the subtraction constants

The quantities M (0), M{(0) and MY (0) are independent of the convention (2.113)
— but they are related to 5, and ~o:

1 1 Oods' s' sin&l(s’)Mls' sin 0y (s M2s
' Loagn _ < /_
MO+ MO =h+ 2 [ 5 { [ N T

4m?2
ds’ { sin 50(8')Mos’ 4 sin da (s Mzs

4 2
" Eoarn _ “ as-
My'(0) + 3M2 (0) =27 + . / e Q0 (s"))] 3 Q2 (s'

2
4m?2

(2.123)

The corresponding expressions in one-loop approximation are of the same struc-
ture. They receive a contribution from an integral over the discontinuities of the
amplitude and a subtraction term. Explicitly we have

1

M,(0) + 5M,(0) = by + ¢z,
—=I 4:—// 4:
and M,y (0) + §M2 (0)=2{co+ 3¢ ) - (2.124)

The right hand sides of these equations are given by (2.121) and (2.122), respectively.
Identifying the corresponding dispersion integrals with those in equation (2.123),
we get for 81 and ~o:

4L5 —1/6472
B~ — it ) BT (2.125)

Yo R 0.
With Lz = (—3.5 £ 1.1) - 103 the numeric value of 3; becomes
B = (6.5+1.8)GeV

The main difference between the dispersive representation and the one loop approx-
imation is, that the integrals in (2.123) include only ww-discontinuities, while the
one in (2.121) and (2.122) also account for the singularities generated by KK, 7
and nn intermediate sates. This causes some uncertainties in the determination of
B1 and vp. As an estimate of these uncertainties one may consider the contribution
to the dispersion integrals of the one-loop approximation above K K-threshold —
the one from 77 intermediate states is proportional to m2 and thus small. The
significant effects are therefore due to the interval 4m% < s < oo. Taking these
contributions into account will shift the two subtraction constants up to

B =83GeV* and 7y =8.6GeV 2
The difference between the integrals over the elastic region 4m2 < s < (m,, + mz)*
are of O (pz), which is beyond the accuracy of the one loop prediction. However,
within the elastic region the dispersive analysis will give the better representation,
because it takes into account multiple two-particle rescattering. This justifies the
presented way of determining the subtraction constants $; and 9. The one-loop
contributions from inelastic channels are used only to estimate the uncertainties.
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2.15 Input for the phase shifts d;(s)

For the phase-shifts dp = 83, 61 = 61 and §2 = &3 we use the following representation,
due to A. Schenk:

; [s—4m2 [(s—4m2\" s{ —4m?2
tand, = 5 T X
s 4m 5p— 8

™

B _4 2 _4 2 2
{ah—bﬁ (%) +cl <%> } (2.126)

2
4m;

where

bl =b! —al + (ab)? Go; -

T _ 4m2
sy —4mz

The Schenk-parameters are not known definitely. I have solved the dispersion re-
lations for three sets of parameters. The first set is the same as used in [2] and is
mainly given by the one-loop result.

e Set A
ay = 0.217 ag = —0.042 a; = 0.037
by = 0.240 by = —0.075 b = 0.005
Q=0 =0 =0
59 = 0.748 GeV? st = —0.469 GeV? s} = 0.591 GeV?

The other two sets are determined by threshold parameters obtained from the two-
loop calculation, ref. [13], and correspond to set I and II in table 4 therein. Ac-
cording to J. Gasser one should trust rather set II than set I, because it gives the
better result for the D-waves.

o Set ]
ay = 0.217 ag = —0.0413 a1 = 0.0420
b= 0.272 b3 = —0.0701 b1 = 0.00390
¢ = —0.0210 c2 = 0.000113 ¢} = 0.000297
53 = 0.755GeV? 52 = —0.877 GeV? st = 0.599 GeV?
o Set I
ag = 0.206 ag = —0.0443 a1 = 0.0420
b) = 0.272 b2 = —0.0703 bi = 0.00392
c) = —0.0210 c2 = 0.000145 c} = 0.000324
59 = 0.754 GeV? 52 = —0.877 GeV? 51 = 0.598 GeV?

Here are the corresponding plots for the phase-shifts:
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Figure 2.4: The phase shifts do(s), d1(s) and d2(s).
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2.16 Inelasticity in the 77 final state interaction

The dispersion relations (2.114) as they stand disregard the inelastic contributions

to the imaginary parts. In this section we want to make an attempt to take the

inelasticities associated with two particle rescattering into account. In the elastic

region, the contributions to the total 7m-scattering amplitude corresponding to each
1

partial wave are proportional to # = sind expidy = 5; (exp 2id; — 1). Inelasticity is

taken care of by introdicing the inelasticity parameters 7;:

1 o
= o (nre*™ —1), where 0<n <L (2.127)
i
To get the numerical values of the parameters 7y, I used the output of a program,
which was kindly put at disposal by J. Gasser. In that representation only 1y and
my differ from 1:

1 1
0.8 0.8
D06 _ 0.6

ISy =
0.4 0.4
0.2 0.2
0 0

Figure 2.5: The inelasticity parameters 1y and n;.

To get an idea how strong inelasticity causes the partial waves t; to differ from the
elastic case, it is convenient to draw an Argand plot:

700 MeV

400 MeV/

600 MeV

0.4 -0.4 -0.2 0.2 0.4

(a) to (b) t1

Figure 2.6: Argand plot for I = 0 and I = 1. The phase shifts correspond to set II.

44



2.16. Inelasticity in the w7 final state interaction

The K K-threshold at 988 MeV shows up quite impressively for I = 0, but also the
resonances fo(1500 MeV), p(770 MeV) and p(1700 MeV) appear very clearly.
Neglecting the presence of inelasticity, i.e setting ny = 1, forces #(s) to lie on the
unitarity circle. This will lead to an over estimation of final state effects and the
decay rate — the solutions of the dispersion relations ignoring n # 1 obtained with
set I or IT are expected to give an upper bound for the rate and thus for the quark
mass ratio ). Nevertheless, the result corresponding to set I and II should be closer
to the true value of @ than the prediction obtained with set A.

We now want to find modified integral equations according to the representation of
the partial waves given in equation (2.127). We proceed in an analogous way as in
the elastic case.

Equation (2.108) for the discontinuity of M;(s) has to be replaced by
1— 7][(8)6722.6(5)

5 (2.128)

disc M;(s) =0 (s — 4m?2) - {M[(S) + M[(S)}

The expressions (2.101) for the angular averages M (s) remain unchanged. Again
we first solve the corresponding homogeneous equation
) 1— —2i6(s)
discmy(s) =6 (s — 4m?) - mﬂs)%
i

The solution to this equation is given by the modified Omnes factor SN)(S)

3(s) = exp{ = / 6(81)8,_(8%_127)7(51) ds' p. (2.129)

2
4m?2

If n(s) — 1 for s — oo, (s) has the same asymptotic behaviour as €(s).
For further use we introduce the =-factor defined as

_ is T Inn(s'
:.(8) = exp % P/ S'(T(—!)S) dSl . (2130)

16m2

For values of s that do not lie in the interval [16m?, 00), the symbol P is understood
to be ignored. The lower integration limit has been shifted to 16m2, since n(s) =1
for s < 16m?2. With the aid of the =-factor we may now write

n~1/%(s) on the upper rim,
(5)-Q(s) where &(s) =< n'/2(s)  on the lower rim, (2.131)
1 else.

©
S
I
Iy
=
[

The analog to the function Q(s) in section 2.13 is Q(s) = M (s)/€(s). Its disconti-
nuity is
{n(s)fl/zeid(s 8)1/267i6(s)} M(S)

= n(
2iQ(s) ’

disc Q(s) = (s —4m?) - (2.132)

where Q(s) = Z(s) - |Q(s)].
We now are in the position to write down the modified integral equations. They
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2.16. Inelasticity in the w7 final state interaction

are very similar to those displayed in (2.114). They only involve the additional
functions 7, (s), Z;(s) and £(s):

My(s) = &o(s) - Zo(s) - Qo(s)x

" {n51/26160 _ né/Ze—izSo} . M[)(SI)

2 Zo(s') |Q0(s")| (s" — s — i€) ’

oo
s2

ao + Bos + 708> + — /
0

am?2
Mi(s) = &(s) - Ei(s) - Qi(s)x
. ) ds! {0;1/261‘61 _ "71/26_1'61} . Ml(sl) (2'133)
bst o | o T EG) e 5 =5 —i0 :

2
4m?2

52 7 ds'  sindy - My(s")
o [ (55— i)

M2(S) QQ(S)

2
4m2

The argument s’ of the functions d; and 7y appearing in the integrals have been
omitted for better readability. We have already mentioned that in our representation
72(s) = 1. The equation for M(s) therefore remains unchanged. One readily checks
that in the elastic limit, n; = 1, we get the original integral equations back. This
serves as a consistency check.
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3.1. Computation of the Omnes functions Q;

3 Computational methods

In this chapter it will be discussed in detail how to solve the integral equations
numerically.

Clearly it would have been possible to solve most of the problems using existing
programs as e.g. Mathematica. However, I preferred to program everything by
myself. This has the advantage to know exactly what the computer is doing and
you are forced to really look at the algorithms. Last but not least one also learns,
that writing such a program takes much more time than thought before.

3.1 Computation of the Omnes functions €2;

There are several ingredients belonging to the integral equations. Let’s start with
the Omnes functions, given by

oo

Qs(s) = exp %/%ds' . (3.1)

First consider the case of real s > 4m?2. To get the values of the Omnes functions
on the upper and lower rim of the cut, Q;(s &+ i€), we use the Sokhotsky-Plemelj
formula:

s [ dr(s") b s /Oo d(s") 1
- /S,(S,_S:Fie)ds—i161(5)+7r73 s’(s’—s)ds'
4m?2 4m?2

The Cauchy principal value is treated as follows:

o0 oo oo

s or(s) ., _ s / o1(s) /51(8') —01(s)
Sp [ 0E) gg 8 )y o8] o1 g
777?/5’(5’—5) s 71'7) s'(s' —s) st s'(s' —s) y
4m?2 4m?2 4m?2
The first integral yields
s-0r(s) .. s/E ds' 7 ds' dr(s) 4m?
SRR — = 1 -
P s'(s' —s) * s'(s' —s) r 5o am2 )’
4m?2 st+e

whereas the second one,

L [0 =000
™ s'(s' —s)
4m?2

has to be treated numerically. First note that the integrand remains finite for s’ = s,
at least as long as s # 4m?2. The integral itself yields a finite value also in the latter
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3.2. Splines

case. We therefore just have to calculate an ordinary integral.

Numerous algorithms were invented to perform numerical integrations. Many of
them are quite sophisticated and show a very good convergence behaviour.

To get the Omnes function, one can make use of the fact that the occurring inte-
grands are slowly varying functions and apply a rather trivial integration algorithm,
as e.g. Simpson’s formula (also referred to as Kepler’s rule):

/bf(x>dm (@ () +1m).

This formula integrates cubic polynomials exactly.

It is a good idea to choose an algorithm which allows to subdivide the integration
interval in such a way that what has already been calculated can be recycled. The
Simpson formula has this feature. Performing one bisection of the interval [a, b] the
above integral may be approximated by:

1b—a 3a+b a+b a4+ 3b

— 4 2 4 .

s (1@ ar (250 o (50) vy () + so)
Denoting the sum of the function values entering with weight 2 by Y- and those
with weight 4 by ¥4, we may write:

b
/f(x) do ~ Az (f(a) + 25 + 4% + F(B)) |

where we start with Az = (b—a)/6, ¥ =0 and X4 = f((a +b)/2). A bisection of
the interval then amounts to Az — Az/2, ¥» — ¥4, whereas ¥4 has to be recalcu-
lated. However, every function value once calculated is reused. The bisections are
performed until the change in the approximation from one bisection to the next is
less than a certain percentage of the result.

Another problem occurring when calculating the Omnes functions is the infinity of
the upper integration limit. We get out of this difficulty by dividing up the interval
[4m?,00) into intervals of finite length and adding up the results. Each of these
integrals is calculated in the way discussed above. Clearly we can only compute a fi-
nite number of such contributions — but how many? First we proceed until we arrive
at calculating an integral who’s lower limit is bigger than s. If the upper limit is A,

the absolute error from introducing this cutoff is less than M;J(A) In (AL_S) We

continue taking further intervals into account until the relative error due to cutting

achieves the prescribed precision. The value of (4m?2) may simply be replaced by
Q(4m2 —e)+Q(4m2 +e)

5 , where € is numerically small.
In the case of complex s or real s < 4m2 we proceed in a similar way. The main
difference is that no singularity of the integrand in equation (2.64) will be met.

3.2 Splines

In fact one could calculate the Omnes functions for any s. However, |€2(s)| enters
as a factor in the integrand of the integrals in (2.114). This forces us to know (s)
at extremely many points — each of them requiring the performance of a numerical
integration taking relatively much time. The question of how to interpolate smooth
functions thus arises at this point.

The probably most widely known interpolation method but not necessarily the
best one is to introduce Lagrange polynomials. Much better suited to our problem
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3.2. Splines

are splines. The original idea of splines is a physical one: if you take a true,
elastic spline and bend it in such a way that it goes through some fixed points, it
will take on the shape with minimal deformation energy. If the points are given
by a not too rapidly varying function f(z), the deformation energy per length is
approximately proportional to f”(z)2. Finding the configuration minimizing the
deformation energy therefore means solving:

b
SE = % -6 [da f'(z)? =0,
a
where « denotes the constant of proportionality. In the following we assume, that
f(x) is known at the points zp < x1 < ... < x,, and denote f(x;) by y; and f"(x;)

by yi. Let f(z) — f(z) + e(x), where () has to vanish at the points z = x;. For
0E we get

6E:ai /f”(:n)e”(:n)d:n.
=1 -

Performing two partial integrations leads to

@
=0.

Ti—1

bE =a Z / @ (2)e(z)dr — o Z I () (x)

This may be fulfilled independently of the special choice of €, if we require
fB@) =0, forxz € [xy,zn],
' (xo) = f"(z,) = 0. (3.2)
(3.3)

The first condition implies that f(x) may be represented by a third order polynomial
in each interval [z;,z;41]. For @ € [z;, x;41] we write

f@) =si(z) = a;(x — a:i)3 + bi(z — :Ui)2 +ci(z —x;) + d; . (3.4)

Further requirements are that f(z), f'(x) as well as f"'(x) are continuous also at
the points = x;. This special kind of splines defined uniquely by these conditions
are called natural cubic splines. The smoothness requirements explicitly read:

si(@i1) = 3ai(wipr — 0)” + 2bi(wip1 — x3) + ¢ = cip,
87 (zi) =y (Tip1 — 2)
S;’(:L”l = 6ai(:ni+1 — :L”l) + 2b; = Gai($i+1 _ mz) + y;l _ Z/{'+1 .

The coefficients a;, b; follow from the last two of the above six equations:

W - Yyl
¢ 6(%@4_1 — xz) ’
Yi
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3.2. Splines

Using the first two equations gives us:

Yi+1 — Yi Li+l —Ti, p "
— "+ 2y
il i 6 (yl—‘rl yl ) )

di = yi.

c; =

The only unknown quantities are the y"’s. The forth equation, however, connects
the coefficients ¢; and ¢;41 — this leads to

Yirz —yi+ 1 yip _yi>

hit1yiro + 2(hig1 + ha)y"i + 1+ hyyy =6 <
hit1 h;

We end up with the task of solving a set of linear equations for the y'"’s — we may
combine them in a matrix notation Ay" = w:

2(h0 + hl) h1 0 yi,
hy 2(hy + hy) Yy
. hos o
0 hn—2 2(hn—2 + hn—l) yrlzl—l

The matrix A is tridiagonal, which makes it especially easy to solve the linear system
of equations (3.5). We may write A in the form A = L - R, where

1 0 mp T 0
L 1 ma T2
I = lr 1 , R= mg
T'n—2
0 lp—o 1 0 M1

ry = h’l )
ma = 2(h0 + hl) ,
mit1 = 2(hi + hiy1) — hils,
I
m;

First the equation LZ = o is solved (forward substitution):

21 = wi,

Zi = di —li_1zi-1.

Next the backward substitution is performed (Ry" = Z):

Zn—1
" n
y —1 = )
" Mp—1
1
"o "
Yy = E(zz - hz‘yi+1) :
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3.3. Numerical calculation of the dispersion integrals

The fact that A is tridiagonal has the big advantage that finding the solution of the
system of equations is only an O(n) problem. It is therefore possible to choose big
n without getting unreasonably long computation times.

Here we will use splines to interpolate functions — clearly it would be too brute to
use natural splines for this purpose. Instead of that we will use approximate values
for yj and y,.

3.3 Numerical calculation of the dispersion inte-
grals

The integral equations (2.114) are solved iteratively. The amplitudes M (s) are
initialized with start values. From this one calculates the angular averages and then
performs the integrals (2.114). This procedure is repeated until the results don’t
change more than a certain percentage from one iteration step to the next. First
we have to rewrite the expression (2.99) for the angular averages to make it easy
to describe the deformation of the integration path. The variable transformation

2= o (8 = 550 + 38) = 55 (s" — 0) leads to:
N 1 2 20
M — d ! _M ! _M !
o) = 5 [ ' (Saaa(s) + Fana(s)+
c

2(s — so) M (s") + %(s' —o)M, (s')) , (3.6)

Y 1 ' ' ' ' '
Mi(s) = 7 05) C/ds (6(5 —0)Mp(s") —10(s" — o) Ma(s")+
9(s — s0)(s' — o) M (s') + 6(s' — 0)2M1(s’)), (3.7)
Y 1 / ! 1 s —
MQ(S) = Ii(S) C/dS <M0(8 ) + 3M2( )

(s" — o) My (s') — g(s —s0) M1 (s')) . (3.8)

The integration paths C' are described in section (2.12).

Here we may take advantage of the spline representation of the amplitudes M (s)
— the integrands in the above equations are given by polynomials. Thus the in-
tegrals themselves may be solved exactly, the approximation is contained in the
representation of the functions Mj(s). We just have to divide the integration con-
tour according to the points chosen to specify the splines.

The integral equations (2.114) are of the form

Mi(s) = Qu(s) | Pr(s) + / dS'ﬁ(s,)1+2ZI( §S>_ — (3.9)
4m?2
where .
_ sindy(s)Mj(s)
FI(S) - |Qj(s)|s’{n
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3.3. Numerical calculation of the dispersion integrals

For ] =0and I = 2 we have m =2, n =0 and for I =1 m = n = 1. There is
no problem with the functions Fj(s) — but the zeros of k(s) need special attention,
since they may cause the integrands in the integral equations to be singular.

At s’ = 4m? the averages M are proportional to the path length and thus of O(|«|).
From the representation of the phase shifts (equation (2.126)) we see that, in the
vicinity of s’ = 4m?2, sind;(s') is of O(|k[*T?"). The integrand in (3.9) therefore
tends to zero as s’ — 4m?2.

The two other zeros of k(s) induce singularities of the integrand at the points

a = (my —mz)* and b = (m, +m,)>.

We divide up the integrals into four parts (a + g = b— h):

z:[+/+/+/. 10

The integration intervals have to be chosen in such a way that s does not lie on
their boundaries except for s = 4m?2. For further use write x(s) = A(s) - B(s)-C(s),

with
A(s):\/%, B(s)=+va—s, CO(s)=vb—s.

The first part can be evaluated numerically as it stands, whereas the second and

third one require a more careful treatment — I will give here detailed solutions.
With G(s) = F(s)/(A(s)C(s)) the second part reads

a+g
ds'

a—g

G(s)

(@ — s")1/241(s" — 5 —je)

(3.11)

Let us consider first the case n = 0. Assume that s ¢ [a — g,a + g]. We may use
the same trick as applied to calculate the Omnes functions:

a+g G( ,)
J ds (a—s")1/2(s' — s — i€) =

at+g G( ,) —G( ) a+g ”

a/g ds (a — s’)1/2(sl — 5 —i€) +G(a)a/g (a — S')1/2(8’ —s—ie) . (3.12)

The first integral has got a finite integrand and is solved numerically. For the second
one, (o, an analytic solution exists. By introducing the variable z = s’ — a we get:

(—z)/2(x +a—s)’

Q0 = / da (a—5) ¢ [~g,g).

This and the following integrals are solved using

dz _ 24/x arctan/x/(s — a)
/ (—$)1/2(:U—|—a—5) o V—z Ja—s . (3.13)

The relation

~.

1—x
arctan(z) = 3 In T iz
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3.3. Numerical calculation of the dispersion integrals

allows us to write (Qp in a nice way with real arguments of In and arctan.

Va i \/7
(22 arctan - +1n m_h/_) for s < a.
QU(Saaag) = (314)

—\/817 (Qarctan - +iln ﬁi’z:z;‘g) for s > a.

If s € [a— g,a + g] we proceed in the same way and add and subtract G(a) in the
numerator of the integrand in equation (3.11). One contribution is G(a)ly(s,a, g),

where
g

dz
Iy = / (—$)1/2( ) (0,—8) € [_ng]

T +a—s—ie)
-9

The solution is given by

\/ﬁ (—l ?_i_\/ivgz—%arctan,/% +i7r) for s < a.

Io(s,a,9) = (3.15)
\/sl,—a (—iln §+\/_ 2arctan |/ -2 + 7r) for s > a.

In the limit s — a the integral Iy remains finite. This is not true for the unphysical
boundary Im(s)=—ie — the contributions from arctan and the residue don’t cancel
one another.

In the case s ¢ [a—g, a+g] the first integral on the right hand side of equation (3.12)
could be done numerically. This is no longer true now, since the integrand suffers
from a second singularity at s’ = s, i.e. solving this integral requires calculating
a Cauchy principal value. We have to represent this contribution as a sum of two
integrals — one running from a—g to p = (s+a)/2, the other one from p to a+g. One
of them has got a finite integrand and can be integrated by a numerical method,
whereas the other one, let us say the first one, has to be written as:

/” w -G

sN1/2(s" — s — i€)

a=g

[ o —G(s) $) — Cla [ ds'
/d a—s 1/2(81_8) +(G() G( ))/g (a—s’)1/2(s’—s—ie)'

a—g a

Again we have divided up an integral which could not be left to the computer as it
stood into a contribution suitable for numerical analysis and a part which can be
solved analytically — the second one which we write as (G(s) — G(a))Py(s,a,g). Po
is the same as Iy except for the integration limits which are {a — g, p} for s < a and
{p,a + g} for s > a.

1 vVa—s—+\/a— \/_ Va—s .
*(l — s+* —In NS Ts+m) for s < a.
PO(Saaag) = (316)
1 . Vs—a—+/p—a . Vi—Vvs—a
\/ﬁ(“n\/ﬁ+\/gfa_“nm+ﬁ) for s > a.

It would have been possible to treat the principal value integrals induced by ie by
choosing a numerical € and solving all integrals except Iy numerically. However, for
my taste this method is ambiguous: if you choose € too large, the result will clearly
tend to be off from the real value by a rather large amount and a too small € might
cause problems with errors coming from the limited precision of computer numbers.
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3.3. Numerical calculation of the dispersion integrals

Thus one would have to search the ”correct” € — and I don’t like procedures like
that, especially because s = a is exactly on the boundary of the physical region.
For n =1 the procedure is the same. In the numerator of the integrand of

a+g
ds'
a—g

we add and subtract G(a) + (s’ — a)G'(a), where now G(s) = F(s)/(A(s)C(s))>.
We are left with ordinary integrals and integrals of the type

G(s)

(a —s")3/2(s" — s — i€)

_{ (—2)° 2 (x ixa —s—ie)

This time the singularity at x = s' —a = 0 is so strong that the integration contour

needs to be deformed:
g -4 ]
[=]+]+]
-9 -9 C [

where C is a semi circle of radius §. The path C has to lie in the other half-plane
than the singularity, namely in the lower one. In virtue of

/f—wW%xTL—s—k>:<a—siimw2&“*mfz;ﬂa“wn¢;§g>

we find the functions @)1, I; and P; corresponding to Qg, Iy and F.
For s < a we have:

_ 242 Qo(s,a,q)
Ql(saaag) - _(G—S)\/g-i_ a—s )

2+ 2% In(s,a,g)

Li(s,a,9) = = 5 = (3.17)
— __2 i_ 1 P0(87aag)
P1(87aag) - a—s<\/§ \/an>+ a—s .

and for s > a we get:

_ 2+2 QO(Sang)
Ql(svaag) - (S—U/)\/g s—a ’
2+ 20 Iy(s,a,g)

Ii(s,a,9) = ; 3.18
1(80’9) (s—a)\/§+ s—a ( )
2i 1 1 Py(s,a,g)

s—a\yg Vp—a s—a

With the formulas presented here it is now an easy task to put the pieces together.
E.g for s € (a — g,a) we get:

Pi(s,a,9) =

at+g

, G(s') _
e
p at+g
. G(s') —G(s G(s") —G(a) = (5" — a)G'(a)
a/g ds (a —s")3/2(s" — s) + J ds (a—s")3/2(s" — s) +
G - 6@ (1o + 2 = <22 )+ (6() - Glo) - (s~ )G (@) P
a)ly a 0 \/g =7 S a s—a a 1-
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3.4. How to represent 7, M and M

In the case s = a the above equation would require an even more detailed treatment
to get it in a form suitable for computers. However, one may solve the problem by
avoiding s = a. It suffices to note that the result will stay finite also in this case.

Defining Hy = :}237%, the fourth part of equation (3.10) reads

o0

[ o 0
s (s" — s —ie)

b+h

For s < b+ h the integrand causes no problem. Otherwise we write

o0

/d’ T /d’HI H’f”ﬂ;(s)/ﬁi_ie).

b+h b+h b+h

The second integral yields

7 ds’' B i7r — m — S% In s;_{;;h for I =0, 2.
s (s — s —ie) + L b for I = 1.
b+h

In either case we have to perform a numerical integration with an infinite upper
limit. The most easy way to overcome this difficulty is to introduce a cutoff A.
This procedure is legitimate since e.g. the behaviour of the phase shifts at energies
greater than about 1 GeV is subject to considerable phenomenological uncertainties.
Of course one has to verify that A is big enough not to influence the final result.
To get the expressions for I,, and P,, at the lower rim, one just has to change the
signs of the terms proportional to 7 and i7 in equation (3.15) and (3.16).

3.4 How to represent {2;, M; and M;

For the numerical evaluation of (2.114) I have exclusively used splines to interpolate
||, M; and MI. So let’s determine in which region we have to represent these
functions.

First it is a good idea to calculate ; at every point we choose to be a supporting
point for the amplitudes M. This way we won’t need splines to interpolate the
Omnes functions themselves but only for representing |Q2;]|.

In principle we need to know M only inside the physical region, namely in the
interval extending from 4m?2 up to (m, — m:)? ~ 9.3m2. However, performing
an iteration step requires to supply information on the amplitude at additional
points in order to calculate the angular averages M;. The angular averages have
to be evaluated for real s € [4m2, A], where A denotes the cutoff introduced in the
last section. We will choose A certainly not smaller than about 100m2 and will
therefore meet values of s for which the path described in section (2.12) has got
complex endpoints. Comparing with figures 2.3(a) - 2.3(d), one sees that we thus
have to calculate My in a rectangle containing the complex region [—3mZ,5m?2] x
[—4mZ i,4m?2 i]. Choosing another shape than a rectangle would only unnecessary
complicate the program. For s > 30m2 we have s; > —s and s_ < 0. This
implies that M is needed on the real axis on an interval with a lower limit equal to
—A. Although it would be sufficient to set the upper limit somewhat higher than
(m,; —my)? (in order to get an interpolation of higher accuracy), it was chosen
even higher. Calculating M up to s > (m, + m,)? may serve as a check on the
correct handling of the singularities generated by x. If e.g. the integrands in (2.114)
are represented not precisely enough, the results for M will show discontinuities
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3.5. Remark on computer generated difficulties

in the vicinity of the zeros of k. These discontinuities are much more distinct at
s = (my +m;)? than at s = (m, —m,)?.

For complex functions real- and imaginary parts are represented separately, i.e. each
by a spline of its own. Inside the rectangle described above, splines are put parallel
to the real axis. From them one may calculate function values that are used to get
a spline parallel to the imaginary axis.

Even though splines have many nice properties one must not use them blindly. The
functions M| are expected to have a cusp at s = 4m?2 (compare with the one loop
result). In order not to smear this cusp we have to split up the interpolating interval
into a piece left to 4m2 and one right to this point. This way it is no problem to
get the cusp right. For M we have even two critical points: s = (my £my)%. At
these points the real- and imaginary parts are equipped with a cusp. It isn’t only
crucial to split the splines there — one also has to set the points very dense in this
region, otherwise the check mentioned above is determined to fail.

The whole iteration procedure has to be performed for different A. Also the point
densities have to be varied in order to find a minimal number of points such that a
further increase does not change the result. Doing so, I found that a save result is
achieved with A = 200 m2. For the results quoted in this work, M was calculated
up to 200m?2 and the rectangle I set to [—6m?2,12m?2] x [—6m?2 i, 6m?2 i].

Within the rectangle the amplitudes have to be known on the upper as well as on
the lower rim of the cut. We have to keep in mind that on the lower rim only points
with s < (m, — m,)? should be taken into account, otherwise we would include
the singularity of the amplitude at s = (m, — m;)? — ie. Inside the rectangle the
functions Mj(s) are calculated at the points s = T—gf - (m,ni) with m, n € Z.
Outside a lower point density is sufficient. Besides that, it is favourable to add
some extra points: at Re(s) = s4 and in the vicinity of Re(s) = 4m2. M; is
equipped with a much higher point density: up to 256 points per m?2 in the vicinity
of s = (m, = my)? — maybe a little bit of luxury.

3.5 Remark on computer generated difficulties

It is a known fact that many lines of a computer program are written twice before
the computer gives the expected output. The source of possible errors is almost
arbitrarily high. Often it is only necessary to compare the output on the screen
with what we wanted to get — if this is o.k., we know the program is working as it
should.

However, when solving problems as our integral equations we have no possibility
to check the results directly. In this case we have to find a method to test the
principle of the implemented algorithm. But before this can be done, we clearly
have to check very carefully the whole code in order to be sure to have implemented
what we intended to. Every information we have on the properties the result should
show is a great help to get on the track of software bugs. If we e.g. expect the output
to be a smooth function and get instead a wildly oscillating one, this will force us
automatically to check the corresponding routines. But even if the first result seems
to be trustworthy, it is absolutely inevitable to check every procedure separately
and to look at intermediate results of the calculation. Many bugs are found where
one never imagined there was a possible source of error.

A frequent error is that a variable is not or wrongly initialized. It may take very
much time to find such an error. Another problem which caused me searching
bugs for days: one easily forgets that the computer represents numbers only with a
limited precision. This is illustrated by the following example. Let us assume that
we have to calculate f(x)/g(x) at several points (e.g. in the course of a numerical
integration). If this quantity has to be evaluated at the point xo with f(z) =
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g(xo) = 0, the result has to be given explicitly. It may happen that, because of the
limited precision, the computer tries to calculate f(z)/g(z) not exactly at z = g
(as expected) but only very close to — and in this case the computer is not able
to return a result of sufficient accuracy. The result may be off by a factor 10 or
more — the numerical integration will never yield the correct answer. To circumvent
this problem we may e.g. set f(x)/g(z) = f(xo)/g(xo) in an entire vicinity of zg
that has to be much bigger than the computer € (the difference between 1 and the
smallest value greater than 1 that is representable).
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4 Numerical results

4.1 How to get the decay rates from the transition
amplitude

Before I come to present the numerical results of the dispersive analysis, let me
add some words concerning the connection between transition amplitude and decay
rate.

The transition amplitude as such is not very interesting, unless we may use it to
make predictions of quantities measured in experiments, as e.g. cross sections and
transition rates. The transition amplitude for a process a — f is given by the
scattering-matrix element Sg,. In the case where av # 3 we have

Sga = i(27r)454(p5 - pa)Tga.

The S— and T'—matrix are defined in subsection 2.8.1. The transition probability
is |Sga|? and thus proportional to the square of a Dirac §-function, ensuring energy-
momentum conservation and making one not too happy at the first glance.

To get the right answer, remember that we can observe merely wave packets and
not incoming particles in a momentum eigenstate, an idealization we have used so
far. The wave packets are, however, peaked quite sharply around given momenta.
In our case we write for the incoming n-particle

) B 3
= [dbFnE),  where dk:@;é%'

The transition probability for |n) — |final) is then given by
w=(20)* [dkdgs (P~ ) 8(Ps — q) FR)F*(@) Alkipg) 4* a.7).

Here Py stands for the total four-momentum of the final state and A(k,py) denotes
the invariant amplitude for the decay n — final state where p; collects the depen-
dence of A on the three momenta of the particles occurring in the final state. The
second é-function may be replaced by 6*(k — g) — we can do [d3q and have ¢° = k°.
The factor 6(k° — ¢°) is represented as (2m)~* [dt expli(k® — p°)t].

= [ G ) 3Ey 1) 109 Ak

Since f(k) is peaked around p,, k may be approximated by p,, except for the k
appearing in f(k). The normalization condition set upon the state |n), namely
(nlny = 1, implies [dk|f(k)|? = 1. The quantity dw/d¢t gives us the decay rate for

a decay into a specific state.
The differential decay rate for decays into final states characterized by momenta ;
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in ranges d®p; is:

(2m)*

dl' =
2p

2 . . .

5= 0%(p1 + p2 + ps — py) |A(s, t,w)|” dpy dps dps .

7

To get I' we go over to the rest frame of the n and proceed in the standard way:
54(1’1 +p2+p3 —pn) = 5(17[1) +p5 +pf — mn) 53(151 + P +173)-

The ¢*-function cancels [d and implies p) = —p> — Ps.
Next we go over to polar coordinates:

d’py d°ps = |p2|ps|pp} dpd dpg dQs dipas deos V3.
Note that §(p? + p3 + pd — m,,) is of the form & (f(cos)23)) — the relation
1+p:+p3 "
1/2
P = (m2 + [pa? + |psf* + 2Ip2|Ips| cos vas) "/

together with

9 (o0 0 0 _ _ |p2llps|
0cos Va3 (p1 T2 AP mn) o
allows us to write it as
5 (pY + p3 + P — my) = 0(cosas — cosdy) ——— .
|p2||P3|

cos ¥y is the zero of the argument of f(z).
Putting these pieces together, we get:

1

2

In the rest frame of the 1 the relations between the energies of the pions and the
Mandelstam variables are of a simple form. In the case of n = 77~ 7" we have:

2 2
m; +mi, —t

B

2 2
mr+mo, —u
= —77 T and pg =
2my,

m2 +m?2, —s
jo 2 — . (41)

2my,
So we may do the angular integrals by changing the integration variables. We are
left with

I'= ———
25673

It remains to determine the phase space to integrate over. It is fully fixed by
energy-momentum conservation. The difference between the masses m + and m o
has quite a large influence on the relevant phase space and may not be neglected.
The relation s+t +u = 2m2, +m2, +m = 3s¢ is equivalent to p? + pd + p§ = m,,.
In the rest frame of the n, momentum conservation reads p; + p= + p3 = 0. If 9
denotes the angle between ) and p3, we may write

1 2
- /dsdu|A(s,t,u)| . (4.2)

152 = 1BL[” + 7s]° — 2 cosd|p|| ).

Using the expressions (4.1) allows us to express cosd in terms of the Mandelstam
variables s and u: cosd = f(s,u). Momentum conservation now reduces to a
constraint on the function f(s,u): —1 < f(s,u) < 1. From this we find the relations
expressing the integration limits of the u-integration by s:

\/mfr0+ (s—m%)2 —2m?2, (s +m2)\/s —4m?,

Nz

1
us(s) = 3 3sp—s=+
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The integration variable s in (4.2) runs from $,,;, t0 Smaz, given by
Smin = 4mfr+ and Smaz = (My — m,ro)2 .
We may finally write down (4.2) with specified integration limits:

Smaw  Ut(5)
/ds /du|A(s,t,u)|2.

Smin  u—_(8)

1
o 2567r3m%

(4.3)

For the neutral decay mode, n — 37°, we have to replace m,+ by m, o. Besides that
the above formula for the decay rate has to be multiplied by an additional factor
1/3!, accounting for the indistinguishability of the three outgoing 7°-particles.

The relevant phase space for the decay n — 77770 is depicted in the following

figure.

(mn - m7‘l’+)2

(Mgt +mgo)’ J

4m?2, (my — myo)?

Figure 4.1: Relevant phase space for the decay n — 77~ 0.
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4.2 Numerical results for Mj

Solving the integral equations (2.114) as described in the last chapter, the result for
the functions M;(s) and for the amplitude M (s,t,u) along the line s = u looks as
shown in figure (4.2). The plots correspond to 31 = 6.5GeV ™, 7o = 0 and phase
shifts according to set II.

2.5t Mp(s)
2
1.5
1
0.5
0
-0.5
0 2 45 [mi]e 8 10
3
0.1 M2(S) M(Sa 380 - 287 S)
2.5
0.05
2
0 1.5
0.05 1
0.5
-0.1
0 i -
0 2 48 {m%]ﬁ 8 10 0 2 4 s [m?j 8 10

Figure 4.2: The function M;(s) and the amplitude M (s,t,u) along the line s = u.
The full lines represent the real parts and the dashed lines the imaginary parts.

4.3 Branching ratio I's o/ i+, 70

The current algebra prediction for the branching ratio r = I's o0 /T 4,50 is
r =151,

whereas the one loop calculation (ref. [7]) leads to
r=143.

This result is only slightly affected when taking electromagnetic corrections into
account. The numerical value given in ref. [8] is

142 <7 < 1.43.
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The values quoted by the Particle Data Group are

r=1.39+0.05 fitted value,
r=134+£0.10 average value.

The dispersive analysis of 7 — 37 leads to

r=144+0.01 setA.
r=143+£0.01 setlI,
r=143+£0.01 set IL

The error is due to the uncertainties associated with ~y and f;. The modified
integral equations yield the same prediction for r.

The results obtained by means of dispersion relations coincide with those from the
one-loop calculations. They are all somewhat higher than the fitted value of the
PDG, but do agree with it within the error bar.

4.4 Dalitz plot distribution

In order to analyze the Dalitz plot distribution we introduce the standard coordi-
nates « and y, defined by

V3
n
3 2
= — —s)—1 4.4
Vo= g (mg = me)? =) 1, (14)
A = my—2mg+ —myo.

The Dalitz plot distribution may be approximated by a second order polynomial
P(z,y) = N(1+ ay + by* + cz®).

The amplitude M (s,t¢,u) is symmetric in ¢ and w. Therefore no odd power of z
occurs in P. The coefficients a, b, ¢ are determined by minimizing the integral

/W@UNMMW—PWMV

physical
region

With 8; = 6.5GeV " * and 7y = 0 we get the following values for a, b and ¢:
| Set | a | b | ¢ |
I |-1.28 | 0.44 | 0.061

IT | -1.28 | 0.45 | 0.059
A | -1.16 | 0.29 | 0.067

We compare the values of a, b and ¢ obtained from the dispersive analysis with
those predicted by the one loop calculation and those from fitting experimental
data. The values from the dispersive analysis are based on set II. The error is due
to the uncertainties of 5; and -y and is merely an estimate.

| Method / Source || a | b | c |
Dispersive analysis || -1.30 £ 0.03 0.45 £ 0.05 0.06 £ 0.01
One loop result -1.33 0.42 0.08
Layter et al. -1.08 £ 0.014 | 0.034 + 0.027 | 0.046 £+ 0.031
Gormley et al. -1.17 £ 0.02 0.21 + 0.03 0.06 = 0.04
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4.5 Final remarks

We have investigated the decay n — 37 by means of dispersion relation technique.

2 A2
This allowed us, in principle, to determine the quark mass ratio Q2 = Zs="

= — to
m2—m?2

rather high accuracy.
To conclude let me shortly discuss the uncertainties associated with the dispersive
analysis of n — 37 presented in this work.

e Determining the subtraction constants 5, and g by using the one-loop result

gives not absolutely sharp values. The numerical analysis shows that the shifts
in 31 and 7 due to contributions from above K K-threshold have quite a large
effect on the prediction of Q.
The requirement that the dispersive result for the amplitude coincides with
the one-loop prediction at the Adler zero s4 relies on the assumption that the
xPT series converges rapidly in this region — the position of s4 is protected
by SU(2) x SU(2) symmetry, whereas the slope is not.

e The phase shifts have quite a large effect on the value of (). This is illustrated
by the large difference between the prediction for @) obtained with set A and
sets I and II, respectively. However, the results corresponding to set I and II
are very close to each other and are supposed to give the better description of
the decay amplitude than set A. Nevertheless, definite knowledge of the phase
shifts is desirable.

e We have seen that taking into account the inelasticity in the 77 final state
interactions changes the result for @) only slightly. The attempt we made to
account for the inelasticity effects, is not the best one can think off — it gives
rather a hint that a precise analysis of inelastic contributions should not yield
a surprisingly different result. As a next step, a more detailed analysis of the
contributions from the region above K K-threshold might be performed. This
would yield additional discontinuities, involving further subtraction constants
to be determined.

e The experimental uncertainties in the decay rate are quite large. More precise
measurement of the rate would allow a more accurate determination of the
quark mass ratio Q).

Disregarding the result obtained with set A, I estimate the error due to theoretical
uncertainties in the decay amplitude at 10%, what leads to an error of 2.5% in the
prediction for (). Adding quadratically the theoretical and experimental error, we
get () = 22.8 0.8, based on set II.
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Appendix

A.1 Feynman propagator

To start let me, for convenience, write down the Euler integral representation of the
[I-function and quote a relation widely used in this and the following section:

o0

r(z) :/e—ttz—ldt, (2 +1) = 2-T(2).

The Feynman propagator A(z) obeys the differential equation
(O +m?) A(z) = 6%(x). (A.1)

With the help of a Fourier transformation one finds the solution to this equation:

A _ 1 i efikz A
(x)—(27r)d dkmz—k2—ie' (A.2)

The ie prescription removes the singularity of the integrand at k* = m?2.
The quantity A(0) appearing in one-loop calculations is ultraviolet divergent if we
set d = 4. Performing a Wick rotation (z° — iz?), we get
i d%
AO) =557 =733
2m) | m? + k2
where now k? is the square of the euclidean norm of k. Introducing an integral
representation for (m? + k?)~! leads to

1 1
) d—2 d—2
-t dy, —A(m2+k%) _ ;M 4 x_ . m . d
A(0) = @)1 /d)\/dke _l(47r)d/2 /d)\)\ e —Zrﬂ_)dml“(l 2).
0 0

This representation of A(0) is defined also for non-integer values of d. We may
expand the I'-function around d = 4:

d 2 ,
F(l 2) =7 I'l)—14+0(d—4).
The singularity turns out to be a simple pole at d = 4.

The quantity A(0) — im?(47)~2/(d — 4) remains finite as d — 4. The two terms
are of different dimension and the difference thus depends on the units used for the
mass. This dependence may be shifted onto an arbitrary renormalization scale p of
dimension mass. The renormalized propagator at the origin,

AT(0) = A(0) — 2im? ), (A.3)
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yields a finite value as d — 4, where X is defined by

d—4

Iz 1 1 ( ' )

=——4¢————(In4 r'a)+1),. A4
167r2{d—4 o \Indm + (1) + (A4)

We have identified the singular part according to the modified minimal subtraction

scheme. The advantage thereof is, that the result for the finite part won’t contain

ugly contributions proportional to ln 47 and I'(1).

In the limit d — 4 the result for A"(0) reads:

im? m?

A"(0) = m
0) = Tgmz 2

(A.5)

A.2 One-loop integrals

In this appendix I will discuss the one-loop integrals occurring in section (2.8.3)
and give some useful relations. For short we will write

d ~
d“k i

(2m)®
Performing a Wick rotation and making use of the integral representation

248 <
q 1 a—1 _—tm? —tq?
T | e ora e,

0

we readily check the formula

/ d(m2 (¢%)° _ (=1)PiT(a—B—d/2)T(B +d[2) d+2(6-a) (A.6)

S @ ier  @niE D) (&)
for integer values of 3.
e Let’s first consider the one-loop function J(s) (s = p?) defined by
) dg
J(s) = —z/ .
(m? = ¢%) (m* = (p — q)?)

To evaluate J(s) one uses the Feynman-Schwinger trick:

1

1 dz
AB 0/((1 —.Z)A-I-J:B)2

This yields:

dz
J(s) = —1 [dg =
() /q/{1—33)(m2—c[")+r(m2—zf"+21%1—q2)}2

—z/dq/ :—z/dw/ 5 -
2 — g2 — ap® + 22pq)” Sl —Hva:—l) ?)

If we now invoke equation (A.6) and expand the result around d = 4, we find

1

J(s) = 1672

1
<d 24+ln47r+F( )+ 0O(d - 4>/da:ga:s) -
0
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66

where ¢%(z,s) = m? + z(x — 1)s. )
The pole of J(s) is contained in J(0). The quantity J(s) = J(s) — J(0) is
finite in the limit d — 4:

1
-1 g*(x,s) 1 o—1
(S)__167r2/d$lng2(x,0)_1671'2 alna+1+2 , (A.8)
0

— 2
where o = \/%.

We again introduce the renormalization scale p and find for J(0), as d — 4:

1 m?
= In— +1]). A9
J(0) T (n;ﬂ + ) (A.9)
To solve the integral
dq (A.10)
/' (m? —¢*)(m? = (p— q)?)
change the integration variable from ¢ to ¢ + g . This yields
. . qu + pT“
Ju(p) = —i /dq .
: (= G+ 37) " = (a - 57)

The contribution with g, in the integrand vanishes for symmetry reasons.
Undoing the change in the integration variable leads to

Jup) = B (). (A.11)

This is quite a fast way to solve (A.10), though not the canonical one.

Applying the Feynman-Schwinger trick, the integral

— ~ du v ‘
) = = [ 42

is brought to the form

/ /N%%+xmm
—Z 3 -
¢*)

This yields two contributions. One is proportional to p,p,. Lorentz invariance
implies that the other one is of the form g, - 3. Contracting with g yields

1 q2
d J:—i/dx/d(j—.
/ (97(2,5) — ¢2)

The integrals over ¢ may be done applying equation (A.6). The final result
for (A.12) can be expressed in terms of already known quantities:

1 pupy 1 9uv
J‘“,(p) = i1 22 (sl —dI,) + m% (sl — I) (A.13)
where
Ii(s) =m?J(s) and I(s)= i (25iA(0) + %I (s)) - (A.14)
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e The last two types of integrals occurring in the one-loop calculation of elastic
mr-scattering are

2 2
N O (e VO
z/dq 1B - z/dq 1B =

m? T (p) + i /dq m”2 - ]:2 =m?Ju(p) + puid(0) (A.15)

and

2. 2 2 2 2
e G Atm?) _./~ q _
z/dq 1B - Z/dq 1B =m-J}(p) —i dqi(p—q)z—mz_

m?J! (p) —i/dcj ;gjfgz =m?J(p) —i0A(0) + isA(0), (A.16)

where we have introduced the abbreviations A = (m? — ¢*) and B = (m? — (p — ¢)?)
for simplicity.
In dimensional regularization 6(0) vanishes — equation (A.2) thus reads

OA(0) = —m?A(0). (A.17)

From equation (A.3), (A.4) and (A.9) we get

m2

iA(0) = m?J(0) + 67 -

(A.18)

All one-loop integrals may therefore be expressed in terms of the function J(s) and
thus split up into a part proportional to J(s) and into another part proportional to

J(0).

e In the limit d — 4 we get

J(O) 1 1 dJo) 4 1

- = — . Al
* 7272 d-1 3 * 7272 (4.19)

e The corresponding expression for J,, (p) = Ju, (p) + Juw (p) is:

I =T L (1= ) g (2= 2)} . a

. JO) 1 m? s\, m’ s
Juv (D) = Puby <T + 2887rz>+9w (J 0) <7 - ﬁ) T 32n T 28827 )

e When contracting the two indices we have to be careful to remember gi, = d
— therefore equation (A.12) has to be evaluated separately in this case. The
result is

_ . m?

JH(p) =m?J(s), and jﬁ(p) =2m?J(0) + 1672 - (A.21)
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A.3 Feynman diagrams for elastic wnw-scattering

In the following all Feynman diagrams contributing to the elastic ww-scattering
amplitude are shown. A full circle denotes a vertex from Egr), whereas Egr) -vertices
are marked by a shaded square.

e Contributions to the two-point function:

e O

e Treelevel diagrams:

X

e One-loop graphs from E((j.f):

x

e External line insertions:

x
.
X

e Graph involving six pion fields:

XK X
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A.4 Two mathematical notes

In this appendix we have a short look at two mathematical relations, widely used
in deducing and solving dispersion relations.

o Cauchy integral representation:
Let f(z) be a function which is analytic in the whole complex plane, except
for a cut starting at ¢ running to infinity along the real axes. Assume that
f(z) is bounded by a power of |z| as |z] — oo, i.e. that f(z)/z"™ tends to zero
for large |z|, independently of the direction. According to Cauchy’s theorem,
the function f(z)/P(z), where P(z) denotes a polynomial of degree n with
zeros z;, allows the following integral representation:

fe) 1§ fede Res (//P, 1)
P@) 2 | FoE-a 12 son

(A.22)

The contour C runs above the real axes from ¢ to 0o + i€, then around a circle
going through —oo back to co —ie and finally below the real axes from oo —ie
to c. Provided that f(z)/P(z) vanishes sufficiently fast for large |z|, the circle
is harmless and we conclude that f(z) can be written in the form

P(z) [ disc(f(z)) dz
™) Pl)(x—2)

(A.23)

where the discontinuity of f(x) across the cut is defined as

flz +ie) — f(x — ie) ‘

dise((z) = 5

The polynomial
Q) =P()Y Res(f(z)/P(x), z)

zZ— Z;

i
is of order n — 1 and is called a subtraction polynomial. Accordingly the re-
lation (A.23) is said to have n subtractions.

o Sokhotsky-Plemelj formula:
This is a standard distribution relation.

1
T+ e

= Fib(z) + P~ (A.24)

This is readily proven by deforming the integration path by replacing the
straight line between —¢ and § with a semicircle lying entirely in the opposite
half-plane than the pole and of radius § and performing the limit § — 0.
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