QCD Corrections to the Rare Decays
B — Xs¢7¢  and B — X 070~
in the Standard Model

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultat
der Universitat Bern

vorgelegt von

Manuel Philipp Walker

von Biel/BE

Leiter der Arbeit: PD Dr. Ch. Greub
Institut fiir theoretische Physik
Universitat Bern






QCD Corrections to the Rare Decays
B — Xs¢7¢  and B — X4 470~
in the Standard Model

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultat
der Universitat Bern

vorgelegt von

Manuel Philipp Walker

von Biel/BE

Leiter der Arbeit: PD Dr. Ch. Greub
Institut fiir theoretische Physik
Universitat Bern

Von der Philosophisch-naturwissenschaftlichen Fakultat angenommen.

Der Dekan:

Vilss 1S o

Bern, den 20. Juni 2002 Prof. Dr. P. Bochsler






Why we concentrate on semileptonic decays in this thesis:

“If you drink the non-leptonic tonic, your
physics career will be ruined and you will end
up face down in the gutter.”

M. Wise in advice to theorists






ABSTRACT

In this PhD thesis we present the calculation of the O(a,) QCD cor-
rections to the semileptonic inclusive rare decays B — X /T¢~ and
B — X 0t0~ (¢ = e, ) in the Standard Model. Rare decays are of great
interest for mainly two reasons. First, they provide sensitive checks on
the Standard Model and allow to retrieve valuable information on the
Cabibbo-Kobayashi-Maskawa matrix elements V;, and V4, which cannot
be measured directly. Secondly, there is the chance that particles present
in extensions of the Standard Model contribute considerably to physical
observables measured in rare B decays. Of special interest in this context
are additional sources of CP violation. Inclusive decays are exception-
ally suited for a theoretical analysis as they are well approximated by
the underlying partonic transitions. The main achievement of this work
is the calculation of the virtual O(ay) corrections to the quark transition
b — s/T¢~ and the corresponding gluon bremsstrahlung contributions.
The result of our calculation drastically reduces the renormalization scale
dependence. The calculation of the QCD corrections to b — d¢t¢~ is
not yet fully accomplished, but we expect to finalize it within a few
weeks. Our work on b — s¢*{~ has already been applied by several
authors, mainly in studies on exclusive rare decays like B — Kete™,
B — K*ete™ and on extensions of the Standard Model.
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Introduction

Introduction

First evidence for the existence of the bottom quark (b quark) was found at Fermilab in
1977 [1]. During the last twenty-five years, many experiments have been conducted to
study B physics, the physics and phenomenology of B mesons. Many experiments are still
running, others are planned and expected to supply new data within the next few years.
Besides the experimental work, also the theoretical framework appropriate for studies on
B decays has been developed. A very comprehensive review, mainly on the experimental
aspects of B physics at BABAR, is given in “The BABar Physics Book” [2]. A very thorough
introduction to the theoretical side can be found eg in [3].

It stands out of question that the Standard Model has proved to be extraordinarily suc-
cessful so far. However, most likely it won’t be the end of the story. There are many open
questions concerning the Standard Model itself, as eg the origin of the mass hierarchy;,
as well as observations not explained by the Standard Model'. The most serious reason
not to trust absolutely in the Standard Model is maybe the fact that it does not provide
enough sources of CP violation to explain the baryogenesis®. The only source of CP viola-
tion within the Standard Model is the complex phase of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix®. Possible extensions of the Standard Model are eg Supersymmetry (SUSY')
or Grand Unified Theories (GUT), to mention only the most popular ones. Evidently, the
energy scales required to produce the corresponding particles directly are out of reach of
today’s accelerators. (This may change, once LHC [5] becomes operational.) But even
without having next-generation accelerators at hand, our search for “New Physics” is not
doomed to fail. Our hope is in observing small deviations from the Standard Model that
reveal themselves in processes feasible by today’s experiments. Rare, loop-induced decays
might have some of the Standard Model particles in the loop replaced by Supersymmetric
particles, for instance. These additional contributions could have a substantial effect on
decay rates and other observables. An example for a “New Physics” contribution is shown
in Fig. 1. On the other hand, precise measurement of physical quantities combined with
their reliable prediction allows to put stringent constraints on certain extensions of the
Standard Model. See eg Ref. [6]. Experiments running at B factories also allow to extract
more precise information on the elements of the CKM matrix. The aim is to measure

!The Standard Model does, for example, not account for neutrino masses, which today stand more or
less out of question.

2There are many cosmological models where the baryon number asymmetry
[np/ny = (5.5+£0.5) x 107°] (see eg Ref. [4]) is generated at the weak phase transition. They all
require additional sources of CP violation.

3This is not quite true; non-perturbative QCD effects induce an additional, CP violating term to the
Standard Model Lagrangian: Ly = ?S%EWMFW“FW“. The experimental bounds on the electric dipole
moment of the neutron imply fgcp < 10719, which is unnaturally small. This puzzle, ie the smallness of
fqcp, is called the strong CP problem.



Figure 1: a) A Standard Model penguin diagram for the transition b — s7v. b) Feynman
diagram for the same process b — s7v, where the W boson and the t quark have been
replaced by a t squark and a chargino, respectively.

enough quantities to impose redundant constraints on Standard Model parameters. These
constraints will either allow to fully determine the CKM parameters or they will force one
to go beyond the Standard Model — equipped with some hints which direction to follow,
however. Of particular interest are possible inconsistencies among different parameters
describing the unitary triangle (V,,Vy, + V4V + V,;V;; = 0). CP violation has first been
observed in K decays [7]. A multitude of CP violating effects are expected in B decays,
and almost any extension of the Standard Model generates additional CP violation.

In the past ten years, great progress has been made in B physics, not only on the theoretical
side but also on the experimental one. The most important experiments are

e CLEO (QCESR; Ithaca, NY) [8]

ete” — T(4S) — BB

The detectors CLEO II, CLEO I1.V and CLEO III have collected about 17.1x10° BB
data samples at the Y(4S5) resonance. The resonance Y (4S5) (10.58 GeV) is the first
bb bound state heavy enough to decay into a pair of B mesons. Recently, about
9.6 x 10 BB events have been analyzed in the search for lepton-flavor-violating
processes as, for example, B — K~ e*uT or Bt — K~ ete® with a resulting upper
limit for the corresponding branching fractions of about a few 107¢ [9].

e BELLE (Q@KEK-B; Tsukuba, Japan) [10]

ete” — T(4S) — BB

BELLE is running since February 2000. The integrated luminosity up to now is
about 70 fb™!, which corresponds to 73 x 105 BB events. Recent BELLE results are
eg the observation of mixing-induced CP violation in the neutral B meson system
and the corresponding measurement of the CP violation parameter sin(23) [11], or
the measurement of the exclusive semileptonic decay modes B — Kete™ and B —
K "~ [12]. Anybody interested in BELLE results should bare in mind the different
notation used at BELLE to name the angles of the unitarity triangle, ie o = ¢,

0= ¢ and v = ¢3.



Introduction

e BaBar (QPEP-II, SLAC; Stanford, CA) [13]

ete” — T(4S) — BB

BaBar* had its first event on May 26, 1998. The integrated luminosity has a cur-
rent value of about 81 fb~! corresponding to 84.5 x 10¢ BB pairs. Both BELLE
and BaBARr work at asymmetric ete™ colliders with beams tuned on the Y (4S5) reso-
nance. Y(4S5) — BB results in B mesons almost at rest in the center of mass frame.
The asymmetric mode allows to produce B mesons with significant momenta in the
laboratory frame. This enables to infer the B mesons’ decay times from their decay
length. However, the required vertex resolution is of O(100xm), which is a demand-
ing task for experimentalists. A recent BABAR result is an improved measurement of
the CP violating asymmetry amplitude, which is proportional to sin(23) [14].

e HERA-B (@QHERA p, DESY; Hamburg, Germany) [15]

pA — bbX

HERA-B is a fixed target experiment at the 920 GeV HERA proton beam at DESY.
For the measurement of the bb production in proton-nucleus interactions HERA-B
uses inclusive B — J/U + X decays. The number of reconstructed B — J/¥ + X
candidates in the year 2000 sample is small [O(10)], reflecting the low efficiency of the
not-fully commissioned detector and trigger. Up to now, HERA-B has not fulfilled
the expectations. The poor efficiency does not allow to compete in CP violation
measurements. However, HERA-B is the first experiment running in a LHC like
environment and many useful experiences for future B factories have been made.

e LHCDb (QLHC, CERN; Geneva, Switzerland) [16]
pp — bbX
LHC is supposed to become operational in 2006. It is expected to produce about
5 x 10"~ 5 x 10'? BB samples per year at /s = 14 TeV. This has to be compared
to the O(107) events per year at the present YT(4S) B factories. The new machine
will provide very good statistics for By and By processes, the latter not accessible
through the T(4S) machines [17].

e BTeV (QTevatron, Fermilab (FNAL); Batavia, IL) [18]

pp — bbX

BTeV is, as LHCb, a second generation B factory. About 2 x 10'' BB events per
year are expected. This experiment too, will allow for high precision measurements
of CP violation parameters in decays of B°, B*, B,,... mesons and the search for
“New Physics” in rare and FCNC (flavor changing neutral current) decays. BTeV
is expected to become operational before LHCb. It is worth mentioning that both
LHCb and BTeV pose many requirements not only to the detectors themselves but
also to the data acquisition systems. B physics related experiments currently running
at Tevatron are CDF [19] and D@ [20].

4BABAR is not only famous for producing many valuable experimental results: its collected data are
stored in the world’s largest database, which currently exceeds 500 TBytes of size!



For completeness, we mention that already at LEP studies on B physics have been done
(ALEPH, DELPHI, L3, OPAL) (ete™ — Z° — bb). BB mixing was measured for the first
time with the ARGUS detector @DORIS (ete™ — Y (4S) — BB) [21].

Recent experimental results related to the present work are the first measurements of
the exclusive semileptonic rare B decays B — K utu~ and B — Kete™, reported by
the BELLE collaboration [12]. The result is based on a 29.1 fb™" sample accumulated
at the YT(4S) resonance. The branching fraction is obtained to be B(B — K /{(T(7) =
(0.751933 £0.09) x 107°. In Ref. [6], where also our calculation on b — s ¢t~ entered,
the theoretical predictions for these branching fractions have been improved and compared
with experimental data. The results are found to be consistent with the Standard Model
and some Supersymmetric extensions. As what concerns the inclusive semileptonic decays
B — X,ete” and B — X, utpu~, only upper bounds for the inclusive branching ration
are available today. These values too, may be found in [12]:

B(B — X,ete™) <10.1 x 107% at 90% C.L. ,
B(B — X,putu™) <19.1 x 107 at 90% C.L. .

Let us now turn to the theoretical side. Albeit CP violation will not be discussed further
in this thesis, it is worthwhile looking briefly at the three types of CP violation in meson
decays. This is, as should have become clear by now, because the main reason for doing
B physics is to put the Standard Model to the test and to look for “New Physics”, which
most likely will be accompanied by CP violating effects. The flavor and CP eigenstates
BY = bd and B° = bd, for example, obey

CP |B%) = wp|B"), CP |B%) =wp|B%), |wp|l=1.
The light and heavy mass eigenstates are given by
[Br) =p|B") +4|B°), |Bu)=p|B") —q|B°) with |[q]* + |p|* = 1.

The time evolution of the flavor eigenstates is described by the Schrodinger-like equation

3(5)- (- 2)(3)

where M and I' are Hermitian matrices. Fig. 2 shows the lowest order Feynman diagrams
that induce B° — B° mixing.

The three types of CP violation are

1. CP violation in mixing
Mixing arises because mass eigenstates need not to be CP eigenstates. For the neutral
B system, this effect can be observed through asymmetries in semileptonic decays:

[(Bys(t) = v X) = T(BY(t) — 0 X)
sl = =7 ;0 0 —= .
T(BY,s(t) = (v X) + T(BY,(t) = (~vX)
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Figure 2: Leading order Feynman diagrams accounting for B® — B® mixing in the Standard
Model.

CP violation in mixing has been observed in the neutral K system [Re(e) # 0].

2. CP violation in decays
CP asymmetries in decays are often referred to as direct CP violation. Any CP
asymmetry in charged B decays,

(BT = f)-T(B" =)
(Bt — ff)+ (B~ — )’

CLf—

are purely an effect of CP violation in decay. Direct CP violation has been observed
in the neutral K system [Re(¢') # 0)].

3. CP violation in the interference between decays with and without mixing
This effect is the result of interference between a direct decay amplitude and a first-
mix-then-decay path to the final state. For the neutral B system, the effect can be
observed by comparing decays into final CP eigenstates of a time-evolving neutral B
state that begins at time zero as B° to those of the state that begins as B:

_T(Bhe(t) = for) =T (Bjyu(t) — for)
for F<thys(t) - fCP) + F(thys(t> — fCP) '

Note that this asymmetry is time dependent. CP violation in the interference between
decays with and without mixing has been observed again in the neutral K system
[Im(€’) # 0)] but also in the neutral B system (agxy 7 0). Very recently, the BELLE
collaboration has reported finding CP violating asymmetries in B — 77~ decays
[22].

We have followed [2, 23] in this discussion.

Bottom quarks are bound by QCD into color neutral baryons. In order to probe the
Standard Model and to look for “New Physics” effects, we have to disentangle them from
non-perturbative QCD effects. For the non-perturbative analysis of QCD, the strong cou-
pling constant a;; cannot serve as expansion parameter. One approach to non-perturbative
QCD are effective theories. They have shown to be very powerful methods. For processes



involving light quarks, ie u, d and s, Chiral Perturbation Theory (xPT) is a very success-
ful approach. It exploits the fact that m, s are small compared to Aqcp, the scale of
non-perturbative QCD. xPT is, however, not appropriate for the description of B and C'
physics. Instead, we may use Heavy Quark Effective Theory (HQET) [24]. HQET is an
expansion in Aqcp/m., where the lowest order term is given by the corresponding quark
level transition, which can be treated within ordinary perturbation theory. Both theories
are derived from formal limits of QCD, ie m, 4, — 0 and m.;, — 00, respectively, in which
new and useful symmetries arise. Other methods, based directly on QCD, are lattice QCD
and QCD sum rules. Even with the approaches mentioned above, there remains a great
variety of problems which to address requires yet other, less predictive, ways. However,
for inclusive weak decays (where the problems discussed in this thesis belong to), some
exclusive semileptonic decays and some static properties, effective field theories lead to
theoretical predictions that are well controlled.

This thesis focuses only on the rare decays b — s{*¢~ and b — d{*¢~ in the Standard
Model. The basic achievement is the calculation of the O(a;) QCD corrections to the
inclusive semileptonic rare decay b — s¢*¢~. The new contributions reduce the renor-
malization scale dependence drastically by a factor of two. We have also completed the
calculation of the corresponding gluon bremsstrahlung corrections. The calculation of the
O(as) QCD corrections to b — d ¢~ which was not part of the basic concept to this
thesis, is not yet fully accomplished. It will be interesting to complete this calculation,
especially because the process b — d ¢/~ is much more sensitive to CP violation than
the transition b — s¢*¢~, where it is strongly Cabibbo-suppressed. In our calculation we
have therefore neglected the combination |V, V4|. This is a save approximation, but at
the same time predicts vanishing CP violation in the corresponding process.

The thesis is organized as follows:

e PART I
In part I we give an introduction to the theoretical framework used to study inclusive
weak B meson decays.

e PART II
“Two-Loop Virtual Corrections to B — X, ¢*¢~ in the Standard Model”,
published in Phys. Lett. B 507 (2001) 162, (hep-ph/0103087).

This is a short letter in which we just present the results for the virtual corrections
to b — s¢t¢~. The main result is that our calculation reduces the dependence on
the renormalization scale by a factor of two.

e PART III
“Calculation of Two-Loop Virtual Corrections to b — s 7/~ in the Standard Model”,
published in Phys. Rev. D 65 (2002) 074004, (hep-ph/0109140).

Here we present in detail the calculation of the virtual corrections to b — s¢*¢~. In
particular, we discuss the application of multiple Mellin-Barnes representations to


http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB507%2C162
http://xxx.lanl.gov/abs/hep-ph/0103087
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD65%2C074004
http://xxx.lanl.gov/abs/hep-ph/0109140
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solve certain Feynman parameter integrals. We do also explain how to include those
bremsstrahlung corrections that are necessary to cancel the infrared and collinear
singularities present in the virtual corrections.

e PART IV
“Results of the O(a;) Two-Loop Virtual Corrections to B — X, £/~ in the Standard
Model”,
Talk given at HEPO1 in Budapest, Hungary, July 2001; published in “Budapest 2001,
High energy physics” hep2001/091, (hep-ph/0110388).

For completeness, I have also included our contribution to the proceedings of the
“International Europhysics Conference on High-Energy Physics (HEPO01), Budapest,
Hungary, 12-18 Jul 2001” where in a short talk our results on B — X, {*{~ were
presented.

e PART V
“Complete Gluon Bremsstrahlung Corrections to the Process b — s{T¢7",
accepted for publication in Phys. Rev. D, (hep-ph/0204341).

In the preceding three papers we have only included those bremsstrahlung corrections
that are necessary to cancel the infrared and collinear singularities present in the
virtual corrections. In this paper we revise the results obtained before and give all
bremsstrahlung corrections to b — s¢*¢~. The additional contributions change the
result only marginally. We further comment on the issue of the definition of m,, ie
the pole mass and the MS mass definition.

e PART VI
“Calculation of Two-Loop Virtual Corrections to b — d ¢*¢~ in the Standard Model”.

The calculation of the process b — d{*T¢~ is in some parts almost identical to that
of b — s{T¢~. However, since the CKM structure no longer factorizes in good
approximation, we do also have to calculate diagrams where the massive ¢ quark is
replaced by a massless u quark. This substantially complicates the calculation of
some diagrams in the sense that the techniques used in the previous work fail. We
present another approach, which unfortunately does not yet solve all problems. At
the present time there remains still one integral which resists our attempt to solve it.
In Part VI, we therefore give but what might serve as a draft of a next paper, which
we hope to finalize within a few weeks.

Our work on b — s¢*¢~ has already been applied by several authors, mainly in studies on
exclusive rare decays, as eg B — Kete™, B — K*ete™ [6, 25|, and on extensions of the
Standard Model [26]-[30].


http://xxx.lanl.gov/abs/hep-ph/0110388
http://xxx.lanl.gov/abs/hep-ph/0204341
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1. The Standard Model

1 The Standard Model

We do not want to give a thorough overview of the Standard Model in this place. There
are many text books that discuss the Standard Model in detail. We restrict ourselves
to give the symmetries and the matter content of the model and the Lagrangian. Fur-
thermore, we will briefly discuss the Yukawa couplings. The latter give, together with
the spontaneous symmetry breaking in the Higgs sector, rise to the fermion masses and
the Cabibbo-Kobayashi-Maskawa (CKM) matrix. The CKM matrix induces quark mix-
ing, which is crucial for transitions as for example b — s¢*¢7: in a scenario with unity
CKM matrix, it were simply absent. We will not, however, investigate the questions of
quantization and gauge fixing in this place.

We follow Nir [1] and define a model of elementary particles and their interactions by

1. the symmetries of the Lagrangian;
2. the representations of fermions and scalars;

3. the pattern of spontaneous symmetry breaking.

1.1 Symmetries and Particles
The Standard Model is defined as follows:

1. The gauge symmetry group Ggy of the Standard Model is

Gav = SU(3)e ® SU2), ® U(1)y-

2. The particle content and transformation properties of the matter and gauge fields of
the Standard Model we list in Tab. 1.1.

3. The only scalar field in the Standard Model, ¢, picks up a non-vanishing vacuum
expectation value

and the symmetry group of the Standard Model is spontaneously broken:
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Field SUB)ec@SU2),@U(1)y Q
u/a Cla tloc +2
Quarks e= {( a) , ( a) : ( a) } 3,2, +¢ ( ‘f)
L de) \s*) \ve ), ( 6) -1
Ute = {uly. 5,45} (3.2.+2) +3
Djg = {df, s, b} (3:2,—3) =5
C (v (v (v _1 0
Leptons Ly, = {(e,)L, (M,)L, (7_/ i (1,2, 2) —1
Egi = {€p: r, TR} (1,1,-1) -1
+ 1
Higgs ¢ = (io) (1,2.43) (T) )
— ¢0* 0
= (4 (1.2.-9) 4
Gauge G, (8,1,0)
Bosons
W, (1,3,0)
B, (1,1,0)

Table 1.1: Particle content and transformation properties of the matter and gauge fields in
the Standard Model. The notation (C, L,Y’) means that the corresponding fields [SU(2)
singlets or doublets] transform according to a C' and L dimensional representation of
SU(3)c and SU(2)y, respectively, and have hypercharge Y. « is the color index and
(@ denotes the electrical charge of the particles. qz = —7»¢" does not represent an addi-
tional degree of freedom of the Standard Model. We merely list it here in order to have its
transformation properties ready at hand.
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1.2 Lagrangian

The Standard Model Lagrangian is the most general renormalizable Lagrangian that is
consistent with the gauge symmetry Ggy. The complete Standard Model Lagrangian (we
give it only in parts here) can be found eg in [2]. We divide the Lagrangian into three
parts:

£SM = £kinetic + EHiggs + EYukawa-

In order to locally preserve gauge invariance, ie the symmetries of the Lagrangian, the
ordinary derivatives have to be replaced by the covariant ones:

O — D' = 0" +ig,GPL* + igWPT® + ig' B"Y.

G, WP and B* are the eight gluon fields, the three weak interaction and the hypercharge
fields, respectively. L® denotes the SU(3)c and T the SU(2), generators, whereas Y are
the U(1)y charges. The interaction between gauge and matter fields is described by the
covariant derivatives. We include the corresponding terms in Lyjeic. In order to clarify
the notation, we give the definitions of generic left- and right-handed fermion fields as we
use them in the following:

:1—75

X 5

X7 XR

1 . _1-
X, =X J;%, Xp=X 275.

We have the following contributions to the kinetic part of Lgu:

Liinetic(Q) =1 Qi (8“ + %gsGa“A“ + %ng“T” + %g’B") Qi

B ) 9
»Ckinetic(U]/ﬁ> =1 Uzlgi m (au + %gsGa“)\a + 32 g,BM) U},Zﬂ

i g/Bﬂ> D]%m

Ekinetic(-D]/?i) :Zﬁéﬁ T <8M + %gs G\ — 3

= 1 1
LkinetiC(Lquj) =1 L/Lz IY/L (a'u + 5 nguTb - Eg/ BN) /Lz'7

Lignotic(Ep;) =i Ep; v (9" — ig' B*) Epy,
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Ekinetic<¢) - K@M + %ngHTb —+ %g/BM) ¢T:| . |:(aﬂ _ ngbMTb _ %g/BM) ¢:| ,

2
1 a auv
£kinetic(G) = - ZGW/G y
1 a apv
»Ckinetic<W) = - ZW;WW )
1 a papv
£kinetic(B) = - ZBMVB )

The matrices A\* and 7° are the Gell-Mann and Pauli matrices, respectively. The field
strength tensors are given by

G4, =0,G% — 9,GY — go f™ GG
Wi, =0,We — 9,W — g e WiWy,

B, =0,B%— 0,B".

where f%¢ and €2 denote the SU(3) and SU(2) structure constants, respectively.

The scalar self-interactions of the Higgs field are described by the Higgs potential. We
have

LHiggs = /JJ2¢T¢ — A (¢T¢)2 :

Note that both Liinetic and Liiges are CP conserving. In extensions of the scalar sector, as
eg multi Higgs-doublet models, Lyiqes may give rise to CP violation.

Finally, we turn to the Yukawa couplings. We split the corresponding term Lyyiawa into a
quark and lepton contribution. They are given by

Lleptons _ }/7; Ziz ¢T E}/ZJ + h.c. and )

Yukawa

uarks — e
‘C%{ukaliva == Y;;l QLi ¢D]/%] - Y;j QLi ) UI/%] + h.c..

We stress that we have been working in the basis of flavor eigenstates up to now.
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1.3 Symmetry Breaking and the Generation of Masses

We write the Higgs field in the form

b= (f;) =<¢>+¢d=%<2>+(%>’

where the vacuum expectation value v corresponds to the classical minimum of the Higgs
potential:
2
v=1/E.

A
The direction of (¢) has been chosen such that the photon remains massless and the
electromagnetic interaction an unbroken symmetry. The Yukawa interactions give rise to
mass terms. For the gauge bosons it reads

v? 02
LS = 925W:W“_ +7 (¢° +¢7) Z, 2",
where
1 W3 _ /B
Wi:—(Wﬁ:FiW,f) and Zuzg Y MECOSHWW5—Sin0WBM.

K \/5 /92 +912
O denotes the Weinberg angle. The field orthogonal to Z, obtains no mass and couples

only to the electron (equally strongly to left- and right-handed components) and not to
the neutrino. It is identified with the electromagnetic field A,,:

_gWi+¢'B,
N /g2+g’2

The masses of the physical gauge bosons are given by

A = cos Oy Wj’ + sin 0w B,,.

g2 U2

2

2
m
and my = W

2
my, = —_—
w cos? Oy,

The vacuum expectation value of the Higgs field gives rise to mass terms for the charged
leptons, whereas the neutrinos stay massless!. We have

£l = —(M))y; E,; Efy + h.c.,

where

/ UV Sre / Vi
MKIEY and LLi: E}/ .

IThere is evidence from several observations and experiments that neutrinos actually are equipped

with a tiny mass. We do in this thesis, however, not discuss extensions of the Standard Model that might
explain those masses.
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We may transformation the lepton fields according to L, = V., L}, Er = Vg E}, with unitary
matrices Vy, and Vg, which can be chosen to diagonalize the mass matrix M/:

Mé = VR Mg Vg, Wlth Mf = diag(me7m,u7 m'r)'

This automatically diagonalizes the interaction terms, too. Splitting the Yukawa couplings
of the leptons into mass and interaction terms, we get

lepton masses T
L P = _Mij LLi ERj+h.C.,

Yukawa

Lbomartersetion — — =5 Mis Ly &} Erj +h.c..

Similarly, in the quark sector we find

Lquark masses _ rd _UL M(/J UR _ EL M/D DR + h.c. ,

Yukawa

where

U.
M ="2ve M=""_v" and Qu=[L).
=gy Ma=gY ad Qu={p)

Again we may transform the fields in order to diagonalize the mass matrices:

Uni =V, Uns, My = V¥ My, (VY = diag(ma, me, my),
Dpp = VP, Dy, Mp = VP M, (VP = diag(ma, ma, my).

In the new basis, the interaction between the W* bosons and fermions is of the form

1 e 1 e
Loo = —— o e W JtH
ce 2sinby M 2sinby, 77

where

— _ — B
J, =Upy Dy + eyl = Uy Vexm D + Doyl

dL €r
= (ap,er,tr) vaVerm | so | + (Pers Pur, V) Y | 12 |
bL TL

where the Cabibbo-Kobayashi-Maskawa matrix Vexy = VY (V). There is one important
difference between the lepton and the quark sector. In the lepton case we have the freedom
to transform the neutrinos v, in the same manner as the left-handed charged leptons. This
is because we do not have to diagonalize a mass matrix for the neutrinos. For the quarks,
however, the transformation matrices for up and down type quarks are fixed independently,
when diagonalizing M|, and Mj,.
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The quark-Higgs interaction term in the mass basis, finally, is given by

uark-Higgs 2 TT * T
L4 k-Higg :—;{URMUULQZ)S —URMUVCKMDL¢3_

Yukawa

+ D Mp Vir Us 65 + D Mp Dy, ¢ + h.c.} .

1.4 The CKM Matrix

We will now give two parametrizations of the CKM matrix and then shortly discuss some
issues of the knowledge we have on its parameters.

The entries of the CKM matrix are conveniently called

Vud Vus Vub
Vekm = | Vea Ves Vb
Viae Vis Vi

There are actually three real and one imaginary physical parameter: three angles and one
complex phase. The standard parameterization [3], used by the particle data group, is
given by
C12 C13 S12 C13 sige "
Vorm = | —s12 Cag — 12 593 s13€™° C12 Co3 — S12 523 S13€"0 Sa3513 )
812 523 — C12 €23 813 et —523 812 — S12 €23 513 etd C23 C13

where ¢;; = cos8;; and s;; = sin ;5.

A very useful parameterization is the Wolfenstein parameterization [4] with the four pa-
rameters A\, A, p and 7. It makes use of the fact that s;3 = O(1073) and se3 = O(1072),
and thus ¢35 = co3 = 1 to very good accuracy.

1-2 A AN (p —in)
Vokm = - — 4 AN + O\,
AN —p—in) —AN 1

A = |Vis| = 0.22 plays the role of an expansion parameter. The Wolfenstein parameteriza-
tion makes it easy to keep track of the magnitude of the elements of Vig.

The unitarity of the CKM matrix implies certain relations among the matrix elements, as
for example

VidVes T VeaVes + ViaVis = 0,
V *+‘/cs cz+‘/;s tZ:O’ (1)

us ¥ ub

ViaVay + VeaVy + VigVip = 0.
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Geometrically, these relations may be interpreted as triangles, called unitarity triangles.
The three angles of the unitarity triangle defined by the second equation in (1) are defined
as
ViaVis ] [ V;ch’Z} [ VudVJb]
azarg{——* , f=arg |-, v =arg |— < -
ViaVaib ViaVe VedVah

They are physical quantities and can be measured independently in B decays.

We conclude this abstract of the Standard Model and give the numerical values for some
of the parameters and show a plot (see Fig. 1.1) illustrating the present Standard Model
constraints on the CKM matrix.

A =0.2221 =+ 0.0021, A =0.827 +0.058,
p=0.23+0.11, n =0.37 £ 0.08,
sin(23) =0.77 £ 0.08, sin(2a) = — 0.21 £0.56,  0.43 < sin®y < 0.91.
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2,
O
. SO
"I',"/////////,, é’/@‘\ Am_ & Am,
L2 > N
AN sin2 WA
[oRR )  | CSUSS SR E— B ----------------------------- -
ViV | &‘%
\\"”0 R ,;..."00
XD\ 6
W0
oo
e 0%
i ‘fitte‘r | | I | | | | | | | / /1
1 0 1 2
p

Figure 1.1: Present Standard Model constraints and the result from the global CKM fit

visualized in the p—n plane. This and further plots may be obtained from the “CKMfitter”
home page [5].
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2 Effective Hamiltonian

The strong interaction, binding quarks into hadrons, is characterized by the typical energy
scale of hadrons [O(1 GeV)]. As we will discuss in Section 3, this allows to describe B de-
cays by the corresponding b quark transitions, which involve the scale m;, [O(4.8 GeV)].
The decay of a b quark, on the other hand, is mediated through W and Z exchange, which
involves the much higher scale my z. The fact that we have two energy scales of very dif-
ferent magnitude, ie m;, < myy,z, allows us to look for an expansion in the small parameter
given by the ratio of these two scales.

The following example shows the basic idea of the effective theory describing weak interac-
tions of quarks. In the Standard Model, the tree level amplitude for the transition bc — sc
is given by

4G F ¢4 m2

A=-— cs’e — (EL’Y CL)(EL’YubL)'
\/§ b k2 . m[2/{/ 14

The momentum transfer through the W propagator is much smaller than my,. Therefore,
we may expand the W propagator in terms of k?/m¥,:

4G k2
A= it *Vb(EL’yHcL)(EL’y“bL) =+ O (m—Q) .

\/§ CS " C o

The same result is obtained from the effective Hamiltonian

AGp .
\/§ CS

Neglecting terms of O(k*/m%,), ie discarding higher dimensional operators, is an excellent
approximation.

Heff =

Ve (Syucr)(€ry"br) + higher dimensional operators.

Figure 2.1: bc — sc at tree level in the full a) and effective theory b).
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2. Effective Hamiltonian

The general idea of the effective Hamiltonian technique is to integrate out all heavy degrees
of freedom of a given theory. Formally, this is achieved in the framework of Operator
Product Expansion (OPE). For an excellent introduction to effective Hamiltonians we refer
to [6]. After integrating out the heavy fields, the higher dimensional operators, ie operators
with dimension greater than six, are dropped. Notice that OPE is not an approximation
by itself. We approximate by retaining the operators of dimension six only.

In this thesis we need the effective Hamiltonian that describes the process b — s¢7¢~. It
is of the form

4G 2 10
Her = —— | > Ci(AOF +X,01) =N Y _Ci 04
\/§ =1 =3

where A\, = V(V,, . O; are dimension six operators and C; are the corresponding Wilson
coefficients. As long as we are not interested in CP asymmetries, we may further simplify
Heg by exploiting |\, | < || = |\¢|. Neglecting A, we have, by the unitarity of the CKM

matrix, A\, = —\; and thus

4GF 10
He = — A C; O; .
T \/5 tizl

Note that the last simplification is no longer valid for the process b — d £*¢~. The operators
O; are advantageously chosen as in [7]:

Or = (spyTc)(ey"T ), Os = (5pyucr)(@"br),
Os = (s17b1) 22, (@"9), Oy = (507T%.) 3 (" T°q),

Os = (Bryamobe) 2@y v*q), Os = (e, 1) X (" v Tq),
O; = g%mb(gLU“”bR)FW, Og = gismb(ELO“”T“bR)GZV,

Oy = S(57b1) Xo(0r0), On = S(517ubr) Xu(0y"350).

This basis has the advantage that no traces involving 5 have to be evaluated in calculations
of physical processes. The operators O; involve only light degrees of freedom, whereas the
short distance effects are described through the Wilson coefficients C;. The asymptotic
freedom of QCD allows to reliably calculate the Wilson coefficients at high scales in fixed
order perturbation theory. In the context of the Standard Model the heavy degrees of
freedom are the ¢ quark and the W and Z° boson. Extensions of the Standard Model
involve additional heavy particles. At least in many popular extensions, these particles
only affect the Wilson coefficients; the operators remain unchanged.

The Wilson coefficients are determined by matching the full theory to the effective theory.
It turns out that the Wilson coefficients depend on a(p) In(my /p). If we choose p = puw ~
my, these logarithms are small and the matching may be done in fixed order perturbation
theory. However, the matrix elements of the operators O; involve typically scales that
are much lower; in the case of B decays of O(m;). Consequently, the matrix elements
depend on a,(p)In(my/p). If we set 4 = pp ~ my in order to make these logarithms
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small, we spoil the fixed order perturbation theory for the Wilson coefficients because
as(pp) In(my /) is of O(1) now. The renormalization group (RG) technique allows us to
sum these large logarithms. The renormalization group improved perturbation theory is
organized as follows:

The leading logarithmic (LL) or leading order (LO) approximation collects all terms of the

form .
()]

The next-to-leading logarithmic (NLL) contribution consequently involves the resumma-

tion of the terms .
m
) ety (2]

For the construction of the effective Hamiltonian the fact that hadrons are bound states
of quarks is irrelevant. However, once we want to calculate a physical process involving
hadrons, we have to deal with non-perturbative matrix elements. As mentioned in the
introduction, there exist different methods to achieve this task, each depending on the
energy scale and class of process. The natural tool in the case of inclusive B decays is
the heavy quark effective theory (HQET). To leading order in this expansion the hadronic
matrix elements are given by the corresponding quark level transitions. The leading term
of HQET can therefore be determined by ordinary perturbation theory.
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3 Heavy Quark Effective Theory

The QCD Lagrangian describing a quark () of mass mg and its interaction with gluons is
given by B B
L =1vqiD,"g —mqgigg, where D, =0, —ig,T*Aj}.

In the heavy quark limit (mg — o0), the velocity v, of the quark is conserved and its
four-momentum may be decomposed into an on-shell part, mgv,, and an off-shell part k,:

P = mqu, + k,, with v =1.

The components of the residual momentum £ are much smaller than mg and are changed
by interactions of the heavy quark with light degrees of freedom by Ak ~ Aqcp. The
large- and small-component fields

hy(z) = e™* # Yo(x)

and

satisfy ¢ h, = h, and ¢ H, = —H,, respectively. Expressed in terms of the new fields, the
quark field ¢ (z) reads

vo(x) = e (hy(x) + Ho(x)).

We may split the covariant derivative D into “longitudinal” and “transverse” parts:

D = D! —v*v - D, with v-D; =0, {lDl,ﬁ}:().

Using relations as hyH, = 0 and ﬁvpﬂzv = 0, the Lagrangian £ takes the form
L = hyi(v-D)h, — Hy(iv- D+ 2mg)H, + h,il), H, + H,ilD\ h,.

From this equation, taking the derivative with respect H,, we find the equation of motion

1
 2mg+iv-D

v

i Dihy.

This allows us, on a classical level, to eliminate the heavy degree of freedom H, from the
Lagrangian:

_ _ 1
— hyi(v- D D ——— ik
Leg = hyi(v )hv+hvz@L2mQ+Z_U.Dz$L v
= hyi(v - D)h +L§mhup _tvD nuph (2)
S v QanZO v 2mg L
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It is possible to integrate out the heavy field H, on the level of the generating functional
for QCD Green functions. This approach yields the same effective Lagrangian Leg (2).

L.g can be written as
7 I 2 9s 7 v 2
Leg = hyi(v- D)h, + mhv(ZDU hy + mhv o G*" hy + O(1/mg).

In the limit m¢g — oo, only the term
Loo = hyi(v - D)h,.

survives. There appear neither Dirac matrices nor quark masses in this equation. For
mq — 00, the interactions of heavy quarks and gluons become independent of the spin
of the quark. Furthermore, when extending the theory to more than one heavy quark
moving at the same velocity, the Lagrangian L., is symmetric under rotations in the
flavor space. This is the heavy-quark spin-flavor symmetry [8]. We refrain from some
subtleties concerning the definition of the heavy quark mass mg and refer to [9] and
references therein. The spin-flavor symmetry leads to many interesting relations between
the properties, especially the spectroscopy, of hadrons containing a heavy quark. We go
into further detail concerning this issue neither.
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4 Inclusive Semileptonic Decays

We make some comments on inclusive decays, without going into detail. We mainly draw
from [9]. Inclusive decay rates determine the probability of the decay of a particle into
the sum of all possible final states with a given set of quantum numbers. Inclusive decays
of hadrons containing a heavy quark can be analyzed using the heavy quark expansion.
Furthermore, there is the hypothesis of quark-hadron duality. The assumption is that
physical quantities are calculable after a “smearing” or “averaging” procedure has been
applied. In the case of semileptonic decays the averaging is provided by integrating over
the leptonic phase space. It provides a smearing of the invariant hadronic mass of the final
state (so-called global duality). For non-leptonic decays, on the other hand, the hadronic
mass is fixed, and the smearing effect comes only from the summation over many hadronic
states (so-called local duality). Clearly, local duality is a stronger assumption than global
duality. The quark-hadron duality, though it is a natural assumption, cannot be derived
from first principles.

We make use of the optical theorem and write the decay width of a hadron H, containing

a b quark as
1

mm,

T(Hy — X) = Im[z (Hb|T|Hb>] .

The transition operator 7 is given by
T =i [ d'sT{Hea(x), Hew(0) }.

T denotes the time-ordering operator and H.g is the weak effective Lagrangian, obtained
from the Standard Model by integrating out the heavy degrees of freedom (¢, W and 7).
Inserting a complete set of states, we recover the standard expression for the decay rate:

LS04 (om — o) [(X Mol )

Qme X

T'(Hy, — X) =

It is possible to construct an operator product expansion for the transition operator 7.
The result is

- Za - v Zi _ _
T =Tybb+ EZ;: boubG" +> Eg(bfiq) (ghid) + O (my,*).

We apply the results of the last section and express (Hy|bb|H,) as

- 1
(Hy B0l Hy) = 1+

2
my,

- 1
(Hy|R(D)*hIHy) + -

3 <Hb‘}_lO'W,G'uyh|Hb> + @ (mg?’) .
my,
A few concluding remarks are appropriate:

e In the limit m;, — oo, the inclusive decay rate of a B meson is given by the decay
rate of the underlying quark transition: I'y, = I'y (my, — 00).
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e There are no corrections of O(1/my).

e The leading corrections, which are of O(1/m?), are due to interactions of the b quark
with the gluon field and to the fact that the b quark is not at rest.

e Spectator effects, accounting for non-perturbative contributions, contribute only at
O(1/my).

This justifies the ansatz to approximate the inclusive B meson decays by the underlying
quark level transition. The decay of a b quark may be analyzed in the framework of weak
effective Hamiltonians. QCD corrections are calculated in ordinary perturbation theory
because typical gluons carry momenta set by the scale m, > Aqcp, ie we are in the region
where asymptotic freedom applies.

In this work we calculate the O(ays) correction to the processes b — s¢T¢~ and b — d (™.

The corrections to B — X, T/~ due to the heavy quark matrix elements are discussed in
Ref. [10].
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5 Matching Calculation for O; and O, and

Operator Mixing

In this chapter we look at an example for the matching procedure. This serves as an
illustration of operator mixing and, later on, the renormalization group evolution of Wilson

Coeflicients.

Since the Wilson coefficients depend on the masses of the heavy particles only, we may
set all light quark masses equal to zero. Retaining these masses finite would lead to terms
proportional to mg /m?%,, ie give rise to higher dimensional operators. In the present case
we thus set m, = 0, where ¢ = u,d, ¢, s,b. Note that in a matching calculation for Oz, for
example, my as to be kept finite. The external momenta we choose to be all equal p with
p? < 0. We do not put p = 0. This is to avoid infrared and collinear singularities.

b)

G00000606000600600¢

999999999999999.9

d)

Figure 5.1: Feynman diagrams of O(ay) for the process b¢ — swu in the Standard Model.
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5.1 Calculation of the Amplitude in the Full Theory

The relevant Feynman diagrams for the process bc — su in the Standard Model are
shown in Fig. 5.1. The diagrams where the W boson is replaced by an unphysical Higgs
particle yield no contribution since all light quark masses are put to zero in the present
calculation. The evaluation of the diagrams is straight forward. The contributions from
diagrams 5.1c)-f) are ultraviolet finite and may be evaluated in d = 4 dimensions where
the following relations hold:

Yo Y5Vl @ YYPL =16y, L @ YL and Yo7l @ ¥*9°y*L =4y, L @ 4*L.  (3)

The sum of diagrams 5.1a)-f) and the counterterm associated with quark field renormal-
ization is given by

ren 1G * Os mi Qs N’2
ren \/_F‘/bc‘/cd [S ESI ln<—p—?/> + 2CFE SQ 11’1<—F>:| s (4)

where S; and S5 denote the tree level matrix elements of the operators O; and O,, re-
spectively. Since we are working in the leading logarithmic (LL) approximation, we have
discarded constant terms of O(asy).

5.2 Calculation of the Amplitude in the Effective The-
ory

To get the amplitude in the effective theory we have to calculate diagrams 5.2a)-f). The
result reads

1 N2+45a, . [1 2N\T  3(N2—1)a,  [1 :
(010 =2CF 2=+ c 1% g —+1n(—“—>]+go‘—sz [—+ln(—u—)},
N. 47 e ™

2\ T 2
(0) _ u a, ., [1 "
(02} =2C5 22 5, [ + 1n<_p_2)_ 6, {_ Hn(‘ﬁ |
Adding the tree level and quark field renormalization contributions yields

2 2 2 2
(01 = 5, 4 e +5%51{ —l—ln( “2)1+—3(NC b a 52{ +1n( ”)}
N. 4m P s P

<02>qfr
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Figure 5.2: Feynman diagrams of O(«y) for the process bc — su in the effective theory.

Again we have discarded constant terms of O(a;). The calculation of the relevant integrals
had to be done in 4 — 2¢ dimensions. This causes the problem that Egs. (3), valid for
d = 4, pick up a correction proportional to €. This correction depends on the choice of
the evanescent operators and is related to the issue of 5 in d dimensions . However,
being of next-to-leading order these additional contributions do not affect the present
calculation. The labels ‘qfr’ stand to indicate that the bare fields are expressed through
the renormalized ones already, ie that we have included the counter terms associated with
quark field renormalization:

o 1
Gbare = ZQ Qren; where Z2 =1~ CF - -
41 €

5.3 Operator Mixing

The divergences that have not been cancelled by the quark field renormalization have to
be removed by operator renormalization. We introduce new operators O} according to

Oi = Z; OF"

and require their matrix elements to be finite. The matrix Z can easily be read off from
Eq. (5). The result is

a. 1 6 _3(N371) a. 1 2 _4
Z=14-—"2=| N 2N? O} =1+-"2= 3 ) 4+ 0(>a?). 6
* A7 € (—6 0 +0(a) + A7 € (—6 0 ) +0(e) (

~—
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Z being a matrix, the operators O; and Oy mix under renormalization. This fact goes by
the name of operator mizxing. The renormalized matrix elements of O; and Oy now read

N2 +5 a; 2 3(N? — 1) a; 2
(O = Gy 4 Ne T2 % g 1n(—“—)—ya—s2ln<—“—>, and
N. 4w P s P

2 N2 _1 2
(O)™ = 52—6—511n(—“—>+ c %52111(—%).

p2

5.4 Wilson Coeflicients

The Wilson coefficients €', and C5 are determined by the requirement

ren ren GF

il = Aot = 75 —75 VoeVea [C1(01)™" + Co(02)™]

and we immediately find

m

G0 =62 1 (M) + 0(ed), - ) = 1+ O, ™
A 2

A different approach is to consider not only fields, masses and coupling constants in Heg but

also the Wilson coefficients as bare quantities, ie we consider them as additional coupling

constants. The bare Wilson coefficients in terms of the renormalized ones read

e = 755 Cj.

The effective Hamiltonian is then given by
4Gy
\/_

where O; are composed of renormalized quantities only, and the diagonal matrix Z™%9¢

collects all factors associated with the renormalization of fields, masses and coupling con-

stants. In the present case we have Z™%9 = Z21. The connection between the matrices
Z and Z¢ is obtained from

4 GF * —1

Aeff \/_ ‘/bc‘/cd Cj (Z )

Het = —= Vo Vey C5 225" O,

4
2700 = “ IV,

\/_ C Zc mqg<0k>0-

] C C

We conclude

Zt =z,
This alternative way of looking at renormalization is more suitable for the renormalization
group treatment of the operator mixing. In the last step we have already generalized

to an arbitrary number of operators that may possibly depend on masses and coupling
constants.
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6 Renormalization Group Equation

6.1 Renormalization of QCD

QCD is renormalized by expressing the bare quantities of the QCD Lagrangian through
their renormalized counterparts:

90 = 1 Z, g.. m® = Z/2m, (8)
GO =z2 G, ¢ =2"q. (9)

The bare quantities are indicated by the superscript (0). In the MS scheme the renormal-
ization constants to O(a;) read

1 « 11 1 1 «
Za 647‘(’(6 ‘ 3Nf>’ Zm SCFE 4’

10./5 2 5 ]-as
23—1—25(5N6—§Nf>’ L=1-Crogy

They may be cast in the general form

- Zz s
Zi=1+Y ”;,(f’ ).
k=1

Physical quantities must be independent of the renormalization scale p. This implies

equations like
d

—g0 = 0.
Mdﬂgs

The above requirement leads to the renormalization group equation

— (g, = —€Q, < th < — _ IS5 — 7 — 2_97_
Y €gs + B(gs), with  3(gs) Z, <udu g> 954,

The last step shows that only the 1/€ term is needed to get the 8 function 3(gs). We define

the constants (; through
3 > 2 \¢
s s
B(gs) = B; ( ) .
0

1672 4 16 72

The constants 3y and [3; are given by

11N.—2N 4 1
_Zttte 27N and ﬁlzg— CQ—EONCNf—QCFNf.

o 3 3
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Retaining the leading term of the [ function, we have the following first order differential
equation for ay:

d as(w)
el — 9 [ s\
with the solution (o)
as(p
as(p) = . (10)

2

1+ ﬂo—az(’:ro) In (Z‘—%)

as(ptg = my) can be extracted from LEP precision measurements. In the MS scheme one
finds as(mz) = 0.11840.003, which we may take as initial condition for the renormalization
group equation. In the range my, < p < m; we have Ny = 5. Together with N, = 3 this
yields By = 23—3

Similarly, we find
d d
“dum = udum(,u) FYmm(),

with the anomalous dimension of the mass operator

1 d 0Z,,
'm s = —_— —Zm = — ST~ -
Ym(gs) 7 i 9 5

We may decompose 7, as

2 4
— ~(0) 9s (M) 1) _9s (/J“) O (q°
me(gS> ’ym 16 7T2 m (16 72)2 + (gs (lu)) )

where the leading term of ~,, is determined by

To the lowest order in the 3 and ~,, functions, the solution to the differential equation for
m() is

0

as(p) } o

6.2 RGE for the Wilson Coefficients

As mentioned before, the relation between bare and renormalized Wilson coefficients is
given by

O = (zHTC.
The starting point for finding the renormalization group equations for the Wilson coeffi-

cients Cj is

d = d T — T d —_

—CO=(py—z" ) C+ 2z —C | =0.
o (Mdu ) * M
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This gives rise to the equation

—C =4"C
Md/j] ry )
where the anomalous dimension matrix v = v(gs(p)) is defined as

d
=7 'w—2. 11
ot Han (11)

We may write the solution to this equation in terms of an evolution matrix U (u, )

—

Clp) = Ulpa, i) C (w4

which solves the same differential equation as C:

d
—U =~"U :
’ud,u (s pw) =7 Ulp, pw)

The general solution to this equation is given by

g(n) 9(1) 9
7" (1) 7 (1) 7" (g2)
U _ d d d e 12
(b ) =1+ / 9B T / o / %2 5(g0) Blgs) 12
9(uw) 9(uw)  guw)

For g(u) > g(pw ), the g-ordering operator T, is defined through

Ty f(g1) - f(gn) = Y Ogi = gin) - OGin_, — i) Flgi) - [ (i)

perm

The sum runs over all permutations {1, ...,4,} of {1,...,n}. T, provides ordering of the
functions f(g;) such that the arguments g; increase from left to right. g-ordering is neces-
sary because, in general, the matrices v(g1) and v(g2) do not commute. The operator T,
allows us to write Eq. (12) in a more compact way:

g(p)
U B 77 ()
(/’67 /’[’W) - Tg exXp dg 6(9’) (13)
g(pw)

Expanding the anomalous dimension matrix in the usual perturbative way,

_ 09 <1><&)2 Ol
vaw) =7V~ +7 () TO@),

we readily find the LL approximation for U(u, pw):

,y(o)
U, pw) =V (nﬂ0> v
D
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where

7,(5’) =V OTY and =

The vector 7(°) contains the diagonal elements of the diagonal matrix yg)).

Next, we consider the derivation of the NLL correction to the evolution matrix U (u, pw ).
We make the ansatz

U, i) = {1 + O‘jl(:) J} U (41, ) {1 . % J} .

Differentiating this equation and Eq. (13) with respect to g(u) and expanding up to O(g?)

yields
(T mT
Y T 0)T B
2J+[—,J1_— +AOT
Bo Bo 53

In the basis where v(9) is diagonal and with the definitions

(14)

Jp:=V1JV and G:=V 1407y,
the solution to Eq. (14) is obtained easily. We get

(),
ij

B

(JD)ij = 2_58

where T'; are the eigenvalues of v(O7 ie ¥ = (T'y,...,T',). The leading and next-to-leading
logarithmic approximations to the Wilson coefficients

C=C0 4 ji CW +0(a?)
m

are then given by

EO () =UOCO ),

C(p) =nUOCO () + [JUO = U 7] CO ().

We decompose the renormalization matrix Z according to

1«
— Z8 (1) 2
Z—1+€4 Z —i—O(ozs).

To leading order, the connection between the renormalization matrix Z and the anomalous
dimension matrix v is given by the equation

W =27 (15)
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The leading order contribution to the anomalous dimension matrix reads [7]

-4 5 0 =2 0 0 0 0 -2 0
120 0 3 0 0 0 0 -5 0
o0 0 -2 0 2 0 0 0
000 - wopoz 0 o B0
0 _ 00 0 =23 0 20 0 0 -2 0
0 0 -Z ® o4 oz 0 B0
00 0 0 0 0 2-24 0 0 0
o0 0o 0 0 0 =2 B_25 0 0
o0 0 0 0 0 0 0 —20y 0
o0 0 0 0 0 0 0 0 —25

The upper left 2 x 2 block of (9 is readily obtained from Eq. (6) using relation (15). To
conclude, we explicitly solve the renormalization group equation for C; and Cy to leading
order. This is rather simple, because the operators O;, ¢+ > 2 do not mix into O; and Os.
To leading order, the problem is thus only two dimensional. The aforementioned block we
denote by 7. After diagonalization of 5 we find

) SN[ 0 N
U( )(luvmW): 4 ) 5
b 0 U 5 3

Inserting expression (10) into n = a,(mw)/as(1) and expanding up to O(a,(mw)) we
recover the solutions (7).

6.3 Renormalization of Composite Operators

In the previous chapter we considered the mixing of the operators O; and O,. In general,
the operator mixing is somewhat subtler, ie we have to take into account the different
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canonical dimensions of the operators. We follow Ref. [11]. In d space-time dimensions the
fields and coupling constants bare dimension

d—1 d—2
[q] = [q(o)] T 9 [Gﬂ = [Gﬁ(o)] 9
4—d
[9\V] = 5 lgs] = 0.
The dimensions of the operators O; are
5d
[Ol ..... 6] = [Og?)ﬁ] =2d— 27 [O;O)] = 7 - 4, [09710] =2d— 2,
3d
(O8] = = 0" =2d -2, (0] = 3d — 6.

We define the dimensionless renormalization matrix

I asg
Z=1+-2 70 O(ay)
edm

through
0 = S (274,10
The constants D, DZ(O) are defined by
2¢D; = [0 — (2d—2), 2eD” =0 = (2d - 2).

Consequently, we have to replace Eq. (11) by

where B B B
Z = diag (;ﬁ 6D(0>) Z diag <;f25D> .

The connection between the anomalous dimension matrix v and the renormalization matrix
Z reads, to O(ay),
s

47

23 (140 - D).

Vij = —2
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7 LL, NLL and NNLL Contributions to
the transition b — s €74~

We want to conclude Part I of this thesis with some comments on the operators Oy and
O10, and say a few clarifying words about the organization of our calculation of the virtual
corrections to b — s £T¢~. The latter is necessary because otherwise the leading logarithmic
(LL), next-to-leading logarithmic (NLL),... counting, as used in our papers, might cause
confusion in some points.

In the Standard Model, the process b — s£T/~ takes place only on the one-loop level. The
relevant O(a?) diagrams are shown in Fig. 7.1.

W, ®
s b s b u,c,t s
w w
o v A
a) b) c)

Figure 7.1: Leading order Standard Model Feynman diagrams for the process b — s¢T¢~.
a), b) Photonic and Z° penguins, c¢) box diagram.

The operators

2

Oy = ;— (5L7ub1) Z (y"e),

a2
s ¢
e? _
and Oy = e (57ub1) Z (0y*50)
s ¢

on the other hand, have non-vanishing tree-level matrix elements contributing to the tran-
sition b — s¢+0:
2
_ e, _ _
(s 07| Ogb) = ?(Us(p/)%LUb(p)) X (v ve),
2
_ e _
(s0T07|Oy|b) = ?(us(p')’yuLub(p)) x (@ ysve).

In order to determine the Wilson coefficients Cq and (g, the amplitude needs to be cal-
culated in the full and in the effective theory. We do not present the calculation of the
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individual diagrams and merely give the results, which may be expressed through the
following functions:

1 T4 zy Inxy
B =-
O(:Et) 4 |:1 — Tt + (,’,Ut — 1)2:|
Tt | Ty — 6 Sxt + 2
C =— 1
0($t) 8 |:Z't — 1 (I’t — 1)2 t:| ’
Dola2) = — 4lnx 1923 — 2527 Sl — 2} — 6x? In e
oL 9 " 36(xy — 1) 18(z; — 1) b
~ 4
Do(l‘t) = Do(xt) 9 )

where z; = m?/m¥,. The function By(x;) results from the evaluation of the box diagrams,
Co(z;) from the Z° penguins and Dy(x;) from the photon penguins. The basic functions
By(xt), Co(z:) and Dy(z;) have been calculated by several authors, mainly by Inami and
Lim [12]. At the scale uw = my, the Wilson coefficients Cy and Cyq are given by

Co(mw) = % _4 Co() + Do(z) + siniﬁw (10 Bo(m¢) — 4 Co(z4)) |
Clo(mw) = %7:.”/) _4 Co(l’t) + 130(.1%)} .

At the matching scale my both Cy and C'y have a vanishing O(a?) contribution. Evolving
the Wilson coefficients to a lower scale, however, yields a non-vanishing contribution C{.

At the scale myy, the operator Oy is the only one with a non-vanishing leading contribution,
ie C’ (mW) = 0;2. To get the leading order term of Cy at a scale pu, it therefore suffices
to consider the part of the anomalous dimension matrix describing the mixing between O,
and Og. It is given by

8
0 =3

0 20

Following the exposition presented in Section 6.2, we find

U(O)(/Lb,mw) — ) 1 1
—su =07 0

From this we readily obtain the leading contribution to Cy:

4
C5” (up) = ~55, (=) O (mw) = —— (1—n7Y).
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Note that, because Oy does not mix into Oy, we have C{g)(u) =0.

The formally leading term to the amplitude b — s ¢/~ is given by
At = Cg” (u)s (707 |Oalb)uree

and collects all terms of the form 1/¢?[g? In(my-/p)]". For the decay b — s{*¢~, the
nomenclature is therefore as follows:

1 r qan
— |¢*In (m—W) — LL (n=1,2,3,...)
9s L _

g°In (@) — NLL (n=0,1,2,...)

g2 |92 In (m—w) . NNLL (n=0,1,2,...)

At next-to-leading order, we get contributions also from other operators, viz O7(u;) and
O10(p) contribute at tree-level and Oy,...,0¢ at one-loop level. The NLL part to the
amplitude is composed as follows

6 2

9s
ANLL = Z CZ'(O)<Oi>1—loop + 16 72 CS)(O?)tree + C’éo)<09>1_100p
=1

2
+ 15;2 Osgl)<09>tree + Of(l))<010>tree-

Because the leading term, ZLL, is numerically smaller than the next-to-leading contribution
[92/(16 7%)] C(Og)tree + CSV{Og)1100p, We have decided to adapt the systematics to the
numerical situation and to treat the LL term as a NLL contribution. The amplitude then
starts at NLL only: _ B

Ar, =0, Anin = Ar + Axere

As the Wilson coefficients of the gluonic penguin operators Os,...,Og are much smaller
than C (1), Ca(up) we may safely neglect QCD corrections to their matrix elements in the
NNLL approximation. One of the main tasks completed in this thesis is the calculation of
the virtual O(ay) corrections to the matrix elements of O; and Oy. Further NNLL terms
arise from the one-loop corrections to O;, Og and O9. A complete NNLL calculation
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would also require the two-loop matrix elements to the operator Oy. However, it turned
out that numerically the NLL corrections associated with Og are of the order of the NNLL
corrections to O; and O,. We have therefore omitted the two-loop contributions from
Oy in our analysis. Unfortunately, we have not explicitly communicated this issue in our
publications. The following NNLL terms are taken into account in our calculation:

ANNLL - Z (Cz((]) <Oi>2—100p + g—s C(l) <Oi>1—loop)

— 1672

g2 (1) g4 (2) 92 (1)
g2 7 {On)hitoop + (16—;2)2 7 (Or)uee + 7575 G5 (O8) 100

4

10 2
9s 1) 9s 2)
+Z (W CZ <Oi>1—loop + (].6 7T2)2 CZ <Oi>tree) .
=9
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ABSTRACT

We calculate O(a;) two-loop virtual corrections to the differential decay
width d['(B — X, £1¢7)/ds where § is the invariant mass squared of the
lepton pair, normalized to m?. We also include those contributions from
gluon bremsstrahlung which are needed to cancel infrared and collinear
singularities present in the virtual corrections. Our calculation is re-
stricted to the range 0.05 < § < 0.25 where the effects from resonances
are small. The new contributions drastically reduce the renormalization
scale dependence of existing results for dI'(B — X ¢*¢7)/ds. For the
corresponding branching ratio (restricted to the above § range) the renor-
malization scale uncertainty gets reduced from ~ +13% to ~ +6.5%.
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1 Introduction

After the observation of the penguin-induced decay B — X~ [1] and the corresponding
exclusive channels such as B — K*v [2], rare B decays have begun to play an impor-
tant role in the phenomenology of particle physics. The measured decay rates are in good
agreement with the Standard Model (SM) predictions, putting strong constraints on its
various extensions. Another interesting decay mode in this context is the inclusive tran-
sition B — X (T¢~ (¢ = e,p). It has not been observed so far [3], but its detection
is expected at the B factories which are currently running. It is known that, unlike for
B — X, large resonant contributions from cc intermediate states come into the game
when considering B — X, /T¢~. When the invariant mass /s of the lepton pair is close to
the mass of a resonance, only model dependent predictions for these long distance contri-
butions are available today. It is therefore unclear whether integrating the decay rate over
these domains can reduce the theoretical uncertainty below +20% [4].

However, when restricting to regions of y/s below the resonances, the long distance effects
are under control. In particular, all the available studies indicate that for the region 0.05 <
§ = s/m? < 0.25 these non-—perturbative effects are below 10% [5]-[10]. Consequently, the
differential decay rate for B — X ¢/~ can be predicted precisely in this region using
renormalization group improved perturbation theory.

It is known that the next-to-leading logarithmic (NLL) result for the B — X, ¢T¢~ decay
rate suffers from a relatively large (+16%) matching scale () dependence [11, 12]. To
reduce it, next-to-next-to leading (NNLL) corrections to the Wilson coefficients were cal-
culated recently by Bobeth et al. [13]. This required a two-loop matching calculation of
the effective theory to the full SM theory, followed by a renormalization group treatment
of the Wilson coefficients, using up to three-loop anomalous dimensions [13, 14]. Including
these NNLL corrections to the Wilson coefficients, the matching scale dependence could
be removed to a large extent.

However, this partially NNLL result suffers from a relatively large (~ £13%) renormaliza-
tion scale (1) dependence [, ~ O(my)], as pointed out in Ref. [13]. The aim of the current
paper is to reduce this dependence by calculating NNLL corrections to the matrix elements
of the effective Hamiltonian given in the next section. Our main contribution is the calcu-
lation of the O(c) two-loop virtual corrections to the matrix elements of the operators Oy
and O,, as well as the O(ay) one-loop corrections to O7—0qg. Also those bremsstrahlung
contributions are included which are needed to cancel infrared and collinear singularities in
the virtual corrections. The new contributions reduce the renormalization scale dependence
from ~ +13% to ~ +6.5%.

The remainder of this letter is organized as follows. In Section 2 we review the theoretical
framework. Our results for the virtual O(a;) corrections to the matrix elements of the
operators O, Oy, O, Og and Oy we present in Section 3. Section 4 is devoted to the
bremsstrahlung contributions. The combined corrections (virtual and bremsstrahlung) to
b — s{t{~ are given in Section 5. Finally, in Section 6, we analyze the invariant mass
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2. Theoretical Framework

distribution of the lepton pair in the range 0.05 < § < 0.25.

2 Theoretical Framework

The most efficient tool for studying weak decays of B mesons is the effective Hamiltonian
technique. For the specific decay channels b — s¢T¢~ (¢ = p, e), the effective Hamiltonian,
derived from the Standard Model (SM) by integrating out the ¢ quark and the W boson,
is of the form

40 10
He = ——FV*V 01017 1
fF \/5 ts tb; ( )

where O; are dimension six operators and C; are the corresponding Wilson coefficients.
The operators can be chosen as [13]

O = (5pyT%c)(Cy*Tby), Oy = (8pyucr)(erybr),
Os = (Scyubr) 22o(@"q), Oy = (5p7,T%¢) > (" Tq),

Os = (SpymYbe) 2o,y v*a), O = (5eyun D) 32, (" Tq),  (2)

O, = émb(gLaube)F,uw Og = gismb(gLO—uuTabR)GZw
Oy = %(gLVMbL)Zz(EVM), O = %(EL%J)L)ZK(Z'W%E),

where the subscripts L and R refer to left- and right-handed components of the fermion
fields. We work in the approximation where the combination (V%V,,) of the Cabibbo-

Kobayashi-Maskawa (CKM) matrix elements is neglected; in this case the CKM structure
factorizes, as indicated in Eq. (1).

The factors 1/¢? in the definition of the operators O7, Og and Oqg, as well as the factor
1/gs present in Og have been chosen by Misiak [11] in order to simplify the organization
of the calculation: with these definitions, the one-loop anomalous dimensions (needed
for a leading logarithmic (LL) calculation) of the operators O; are all proportional to
g2, while two-loop anomalous dimensions (needed for a next-to-leading logarithmic (NLL)
calculation) are proportional to g, etc.

After this important remark we now outline the principal steps which lead to a LL, NLL,
NNLL prediction for the decay amplitude for b — s£7¢:

1. A matching calculation between the full SM theory and the effective theory has
to be performed in order to determine the Wilson coefficients C; at the high scale
pw ~ my,my. At this scale, the coefficients can be worked out in fixed order
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perturbation theory, ie, they can be expanded in g2

2 4
' _ (0 9s 1 9s (2) 6

At LL order, only CZ-(O) is needed, at NLL order also C’i(l), etc. While the coefficient
C§2), which is needed for a NNLL analysis, is known for quite some [15], 052) and
Cfg) have been calculated only recently [13] (see also [16]).

2. The renormalization group equation (RGE) has to be solved in order to get the
Wilson coefficients at the low scale u, ~ my. For this RGE step the anomalous
dimension matrix to the relevant order in gy is required, as described above. After
these two steps one can decompose the Wilson coefficients C;(u) into a LL, NLL
and NNLL part according to

Cil) = ) + S8 00y 4 (“1’?7’:;’;2 )+ 0(¢). (@)

3. In order to get the decay amplitude, the matrix elements (s ¢~ |0;(u)|b) have to
be calculated. At LL precision, only the operator Og contributes, as this operator
is the only one which at the same time has a Wilson coefficient starting at lowest
order and an explicit 1/¢? factor in the definition. Hence, in the NLL precision QCD
corrections (virtual and bremsstrahlung) to the matrix element of Oy are needed.
They have been calculated a few years ago [11, 12]. At NLL precision, also the other
operators start contributing, viz O7(u) and Oqo(up) contribute at tree-level and the
four-quark operators Oy, ..., Og at one-loop level. Accordingly, QCD corrections to
the latter matrix elements are needed for a NNLL prediction of the decay amplitude.

As known for a long time [17], the formally leading term ~ (1/ gg)C’éO) (1) to the amplitude
for b — s¢T¢~ is smaller than the NLL term ~ (1/¢?)[g?/(16 7%)] 8 (). We adapt our
systematics to the numerical situation and treat the sum of these two terms as a NLL
contribution. This is, admittedly some abuse of language, because the decay amplitude
then starts out with a term which is called NLL.

As pointed out in step 3), O(as) QCD corrections to the matrix elements (s 70~ |O;(1)|b)
have to be calculated in order to obtain the NNLL prediction for the decay amplitude.
In the present paper we systematically evaluate virtual corrections of O(ay) to the matrix
elements of Oy, Os, O7, Og, Og and O1g. As the Wilson coefficients of the gluonic penguin
operators Os, ..., Og are much smaller than those of O; and O, we neglect QCD corrections
to their matrix elements. As discussed in more detail later, we also include those brems-
strahlung diagrams which are needed to cancel infrared and collinear singularities from
the virtual contributions. The complete bremsstrahlung corrections, ie, all the finite parts,
however, will be given elsewhere [20]. We anticipate that the QCD corrections calculated
in the present letter substantially reduce the scale dependence of the NLL result.
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b 0172 S b 0172 S b 0172 S
. X c% X . o C§ — . o X
S S
S S
c 99% c 999 0060600
99 99 c
a) c)
b 0172 S b 0172 S
- o o
S =1
% ¢ % :
b) d)

Figure 3.1: Complete list of two-loop Feynman diagrams for b — sv* associated with the
operators O; and Oy. The fermions (b, s and ¢ quarks) are represented by solid lines,
whereas the curly lines represent gluons. The circle-crosses denote the possible locations
for emission of a virtual photon.

3 Virtual Corrections to O, Oz, O7, Og and Oy

In this section we present our results for the virtual O(q;) corrections induced by the
operators Oy, Oy, O7, Og, and Oy. Using the naive dimensional regularization (NDR)
scheme in d = 4 — 2 ¢ dimensions, both ultraviolet and infrared singularities show up as
1/€e" poles (n = 1,2). The ultraviolet singularities cancel after including the counterterms.
Collinear singularities are regularized by retaining a finite strange quark mass mg. They
are cancelled together with the infrared singularities at the level of decay width, taking
the bremsstrahlung process b — s/¢*T¢~ g into account. Gauge invariance implies that the
QCD corrected matrix elements of the operators O; can be written as

(s 050710;1) = (O ree + F{7(Or) e (5)

where (Og)iree and (O7)iee are the tree-level matrix elements of Og and Oy, respectively.

3.1 Virtual Corrections to O; and O

The complete list of Feynman diagrams for the two-loop matrix elements of the operators
O, and Oy is shown in Fig. 3.1. Our calculation follows the line of [18, 19] where the
contributions of Oy to the processes B — X,y and B — X g have been evaluated. There,
the results have been found as expansions in terms of powers and logarithms of the small

2

parameter m2 = m?2/mj. The central point of the procedure is to use Mellin-Barnes
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representations of certain denominators in the Feynman parameter integrals, as described
in detail in Refs. [18, 19]. In the present case, however, we have an additional mass scale:

¢?, the invariant mass squared of the lepton pair. For values of ¢? satisfying 51—23 < 1 and
437212 < 1, most of the diagrams allow a Taylor series expansion in ¢ and can be calculated
in combination with a Mellin-Barnes representation. This method does not work for the
diagram in Fig. 3.1a) where the photon is emitted from the internal line. Instead, we
applied a Mellin-Barnes representation twice. We will explain this procedure in detail in
Ref. [20]. The diagrams in Fig. 3.1e) finally, we calculated using the heavy mass expansion

technique [21].

Using these methods, the unrenormalized form factors F(79 of O; and Os, as defined in
Eq. (5), are then obtained in the form

FOO = 37 00 5 nd(5) (m2)' In™ (1) (6)

©,5,L,m
where § = q2/m§ and m. = m./my. 1i,j, m are non-negative integers and [ = —i, —i +
1/2,—i+2/2,..... We keep the terms with ¢ and [ up to 3, after checking that higher

order terms are small for 0.05 < § < 0.25, the range considered in this Letter.

The counterterm contributions are of various origin. There are counterterms due to quark
field renormalization, renormalization of the strong coupling constant g, and renormaliza-
tion of the charm and bottom quark masses. We stress that we use the pole mass definition
for both m. and m,. Additionally, we also have to take operator mixing into account. The
corresponding counterterms to the matrix elements (C;O;) are of the form

(CO) = Y 6Zi;(0;), (7)
J
s 1 2 1 1
i = o ("%‘1 * 2“5> + Ty <“%2 ot ?2“?]'2> +Ol). ®)

Most of the coefficients af}* needed for our calculation are given in Ref. [13]. As some are
new, we list those for i = 1,2 and 7 =1,2,4,7,9,11,12 that are different from zero:

_9 4 _1 _16 5 2 12 58 12 __ 64 22 _ 1168
" 23 50 =5 15 3§ 417 = — 43 19~ "7 3197 3
a’ = ,
2 4 12 _ 116 12 _ 776 22 __ 148
6 0 3 0 —9 1 0 (127—ﬁ, a29_m7 a29—ﬁ.
(9)
011 and Oy, entering Eq. (7), are evanescent operators, defined as
O = (St L er) (e Tz) — 16 On,
(10)

Or2 = (Spvumpcr) (€LY yPbr) — 16 Os.

52
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Before we give the result for the renormalized form factors, we remark that only dia-
gram 3.1f) (and also its renormalized version) suffers from infrared and collinear singu-
larities. As this diagram can easily be combined with diagram 3.2b) associated with the
operator Oy, we will take it into account in the next subsection, when discussing virtual
corrections to Oyg.

We decompose the renormalized matrix elements of O; (i = 1,2) as

(s 1C008) = O (=75 [E Ohiee + E™ (O] (11)
T
with Oy = 7= Og and Or = = 07 Using the shorthand notations L, = In(u/my) and

Ly, =In(3), the form factors F ) and F; ™ read

o 1424 16 64 16 1632 ), .
FO = (-2 2 it 2L Ly e Ly Lo+ [ e — o2 L
! ( 720 To T o7 P g et T\ o1 T a3 e ) e

4 8 p— 9 16 32 5,6 3 256 , (9)
48 g S LS D sy 12
+(2835 315 ) ne +(76545 8505 ) WS gt t i (12

256 32 128 32 32 64
Fz(g) (___W__LC>LM+ Ly Ls +<__+_A2)L#§

243 8179 81 105 " 15
8 6 ., 2 32 64 = 3 512 5 L)
2 4= L S L, ~ L 13
+( 945+105m°’> ke +< 25515 ' 2835 ¢ TR AR
208 416
M _ _ ) _ 416
B =55 Li+f”, B = 81 Ln - (1)

The analytic results for £, {7, 1 and f{” (expanded up to §° and (m2)?) are rather
lengthy. The formulas become relatlvely short, however, if we give the charm quark mass
dependence in numerical form (for the characteristic values of m.=0.27, 0.29 and 0.31).

We write the functions féb) as

FO =" kP, 5) 8 L (a=1,2,b=7,9;i=0,...3;j=0,1). (15)
The numerical values for the quantities kY (1,7) are given in Tab. 3.1 and 3.2.

3.2 Virtual Corrections to the Matrix Elements of O7, Og and Og

We first turn to the virtual corrections to the matrix element of the operator Og, consisting
of the vertex correction shown in Fig. 3.2b) and of the quark self-energy contributions.
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e = 0.27 e = 0.29 e = 0.31
£9(0,0) —12.327+0.13512i —11.973+0.16371 4 —11.65+0.18223
E2(0,1)  —0.080505 — 0.067181 —0.081271 — 0.0596917  —0.080959 — 0.051864 i
K2 (1,0) —33.015 — 0.42492 —928.432 — 0.25044 —24.709 — 0.13474
EP(1,1)  —0.041008+0.00786857  —0.040243+0.0164427  —0.036585 + 0.024753 i
K (2,0) —76.2 — 1.5067 i —57.114 — 0.86486 i —43.588 — 0.4738 i
E2(2,1)  —0.042685+0.015754 —0.035191 +0.0279097  —0.021692 + 0.036925 i
K (3,0) —197.81 — 4.6389 —128.8 —2.5243 —86.22 — 1.3542
EP(3,1)  —0.039021 +0.039384 4 —0.017587 +0.0506397  0.013282 + 0.052023 i
K7(0,0) —0.72461 — 0.093424 —0.68192 —0.0749987  —0.63944 — 0.05885 i
K7(0,1) 0 0 0
K7 (1,0) —0.26156 — 0.15008 i —0.23935 — 0.12289 i —0.21829 — 0.10031
KD(1,1)  —0.00017705 + 0.02054 i 0.0027424 4+ 0.0196767  0.0053227 + 0.018302
K7 (2,0) 0.023851 — 0.20313 i —0.0018555 — 0.175 —0.022511 — 0.14836 i
K7(2,1) 0.020327 + 0.016606 i 0.022864 4+ 0.0114567  0.023615 + 0.0059255 4
K7 (3,0) 0.42898 — 0.099202 i 0.28248 — 0.12783 i 0.17118 — 0.12861 i
K7 (3,1) 0.031506 + 0.000425917  0.029027 — 0.0082265i  0.022653 — 0.0155

Table 3.1: Coefficients in the decomposition of f1(9) and flm for three different values of
me [Eq. (15)].

The sum of these corrections is ultraviolet finite, but suffers from infrared and collinear
singularities. The result can be written as

A

<S£+£7|C9O9’b> = 550) <_E> |:F{)(9)<69>tree + F9(7) <67>tree:| ) (16)

with A
~ Ol ~(0 T 0 g 1

The form factors Fg(g) and F9(7) read (keeping terms up to order $°)

@ 16 20 16 , 116 ,
FO =2y sy — 24 it 17
o 3+35+35+275+ff (17)
- 2 1. 1.
@):—531+§s+§§ , (18)
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e = 0.27 e = 0.29 e = 0.31
k$2(0,0) 7.9938 — 0.81071 i 6.6338 — 0.98225 i 5.4082 — 1.0934 i
k2(0,1) 0.48303 + 0.40309 i 0.48763 + 0.35815 i 0.48576 4 0.31119 i
KV (1,0) 5.1651 + 2.5495 i 3.3585 + 1.5026 i 1.9061 + 0.80843 i
KV (1,1) 0.24605 — 0.047211 i 0.24146 — 0.0986497  0.21951 — 0.14852
k7 (2,0) —0.45653 + 9.04021 —1.1906 + 5.18921 —1.8286 + 2.8428i
KV (2,1) 0.25611 — 0.094525 i 0.21115 — 0.16745 0.13015 — 0.22155
k7 (3,0) —25.981 +27.833 —17.12+15.146 —12.113 +8.1251 4
KV (3,1) 0.23413 — 0.2363 i 0.10552 — 0.303837  —0.079692 — 0.31214 4
k$7(0,0) 4.3477 + 0.56054 i 4.0915 +0.44999 ¢ 3.8367 4 0.3531
k7 (0,1) 0 0 0
k7 (1,0) 1.5694 + 0.9005 i 1.4361+0.737321 1.3098 + 0.60185 i
KD (1,1) 0.0010623 — 0.12324i  —0.016454 — 0.118067  —0.031936 — 0.10981 ¢
k7 (2,0) —0.14311+1.2188 0.011133 4 1.05 0.13507 4 0.89014 i
K7(2,1) —0.12196 — 0.099636i  —0.13718 — 0.0687337  —0.14169 — 0.035553 4
k7 (3,0) —2.5739+0.59521 i —1.6949 + 0.76698 i —1.027140.77168
K7 (3,1) —0.18904 — 0.00255547  —0.17416+0.0493597  —0.13592 + 0.093

Table 3.2: Coefficients in the decomposition of f2(9) and f2(7) for three different values of
me [Eq. (15)].

where the function f;,; contains the infrared and collinear singularities. Its explicit form is
[using 7 = (m/my)?]

8 [ pn]™ o1, 1 4 [ pl™ 2 2,
= — | —| (1 - - — =] Sn(r) — = m%(r). (1
Jint 3€{m] (+s+23+ S Rl b n(r) + 5 In(r) = 3 n°(r).  (19)

At this place, it is convenient to incorporate the renormalized diagram 3.1f), which has
not been taken into account so far. It is easy to see that the two loops factorize into two
one-loop contributions. The charm loop has the Lorentz structure of Oy and can therefore
be absorbed into an effective Wilson coefficient: diagram 3.1f) is properly included by

modifying 5’50) in Eq. (16) as follows:

~ ~(0,mo ~ 4
C8) — OO = O + (02“” +3 09”) Hy, (20)
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Figure 3.2: Some Feynman diagrams for b — sy* or b — s{T¢~ associated with the
operators O, Og and Og. The circle-crosses denote the possible locations where the virtual
photon is emitted, while the crosses mark the possible locations for gluon bremsstrahlung.
See text.

where the charm-loop function Hy reads (in expanded form)

4 a2 a3
S S S
27—
mC mC mc

~1260 + 2520 In (ﬁ> 1252

me

H, (21)

2835
In the context of virtual corrections also the O(e) part of this loop function is needed. We

neglect it here since it will drop out in combination with gluon bremsstrahlung. Note that
Hy = h(m?,8) +8/9 In(u/my), with h defined in [12, 13].

We now turn to the virtual corrections to the matrix element of the operator O7, consist-
ing of the vertex- [Fig. 3.2a)| and self-energy corrections. The sum of these diagrams is
ultraviolet singular. After renormalization, the result can be written as

O

+p— _ ~(0)
(07| CrOq|b) = O ( =

) [ (0s)nee + F (Or)one] (22)

with O7 = 72 O7 and 5§0) = Cél). The form factors F7(9) and F7(7) read

. 16 1. 1., 1.
F;):—g 1+§S+532+1337 (23)

32 32 128
7 = Lk 5 485468+ 578"+ fur. (24)

Note that for these expressions the pole mass for my has to be used at lowest order.
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4. Bremsstrahlung Corrections

Finally, we give the result for the renormalized corrections to the matrix elements of Os.
The corresponding diagrams are shown in Fig. 3.2¢) and 3.2d). One obtains:

(5 0407 |CxO|b) = (0)( s )[ F(O0) e + FL <O7>tree}, (25)

47

with @EO) = C’ . The form factors F ) and F ) read (in expanded form)

o104 32, (184 40 L\ (21232 L)
e o2 Shes 02 26
s =g " T\ 9™ )t 35 37 )° (26)
193444 560\ 5 16 o
Y 2.1
< 945 97 ) 9 (—i—s—i—s +s),

32 8 44 8 | 40 32 316
F8(7):——L#—|——7r2————i7r—|—<—7T2——>§+<—72—_)§2 (27)

9 27 9 9 3 3 9 9
200 658 8
" (W“?) FoglE+5+5).

4 Bremsstrahlung Corrections

We stress that in the present Letter only those bremsstrahlung diagrams are taken into
account which are needed to cancel the infrared and collinear singularities from the vir-
tual corrections. All other bremsstrahlung contributions (which are finite), will be given
elsewhere [20].

It is known [11, 12] that the contribution to the inclusive decay width coming from the
interference between the tree-level and the one-loop matrix elements of Oy [Fig. 3.2b)] and
from the corresponding bremsstrahlung corrections [Fig. 3.2f)], can be written in the form

2 5 * 2
dlgg <Oéem>2 GE My pote | Vis Vi

a5 \dr 43 73 (1-3)% (1+29) (‘O _sw9(§))’ (28)

where CN’éO) = i—: (C’éo) + f—;C’él)>. The function wg(8) = w($), which contains information

on virtual and bremsstrahlung corrections, can be found in [11, 12]. Replacing C'g
C{P™mY [see Eq. (20)] in Eq. (28), diagram 3.1f) and the corresponding bremsstrahlung

corrections are automatically included.

Similarly, the contribution to the decay width from the interference between the tree-
level and the one-loop matrix element of O [Fig. 3.2a)], combined with the corresponding
bremsstrahlung corrections shown in Fig. 3.2e), can be written as

* 2
dF?? _ (aem ) 2 G% mg,pole H/;fs ‘/tb’
ds 47 48 73

(1—58)2-4(1+2/8)- (‘0

%), @
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where 5§0) = C§l). The function w;($§), which is new, reads

4 2
wr(8) = B ln(i) —3 Li(8) — §7r2 —3 In($)In(1 — 3)
mp
1845 25(2-25— 82 1 16—-1158—1738?
L8 oy 23@25 ) L = (30)
3245 3(1—3)"(2+3) 18 (2438)(1—3)

Finally, one observes that also the interference between the tree-level matrix element of
O7 and the one-loop matrix element of Oy (and vice versa) lead to an infrared singular
contribution to the decay width. We combined it with the corresponding bremsstrahlung
terms coming from the interference of diagrams 3.2e) and 3.2f). The result reads

dF79 ([ %em 2 G%‘ ml?,pole |V;f:v;b|2 A\2 ~(0) ~(0)) Us A
2 - <4W> b (1-8)?2-12- [ 2Re (C7 Ct >?w7g(s) . (3D

For the function wqg($), which also is new, we obtain

4 4 2 2
wro(8) = ~3 In (77%) ~3 Li(s) — §7T2 ~3 In(s) In(1 — 3)
12475 L 28(3-28) . 15-93
- In(1—§)— 222725, — 2
ST S )

5 Corrections to the Decay Width

In this section we combine the virtual corrections calculated in Section 3 and the brems-
strahlung contributions discussed in Section 4 and study their influence on the decay width
dl'(b — s¢t¢7)/ds. In the literature (see eg [13]), this decay width is usually written as

(B — X, (+07) <a6m>2 G e Vi Vi

_ 1_A2
3 i A8 73 (1-35)

~ ]2 ~ ~
x {(1+2§) (]cgff + |G Cif

2) +4(1+2/3)

“ 412 Re (égffégﬁ*)} . (33)

where the contributions calculated so far have been absorbed into the effective Wilson
coefficients CST CST and C¢I. Tt turns out that also the new contributions calculated in
the present paper can be absorbed into these coefficients. Following as closely as possible
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5. Corrections to the Decay Width

nw=2.5GeV w=>5GeV pw =10 GeV
a 0.267 0.215 0.180
c© —0.697 —0.487 —0.326
i 1.046 1.024 1.011

(—0.360, 0.031)

(—0.321, 0.019)

(—0.287, 0.008)

ALY —0.164 —0.148 —0.134
Agﬁ, A) (4.241, —0.170) 4.129, 0.013 4131, 0.155

(0.115, 0.278)
(0.045, 0.023)

0.032, 0.016

0.022, 0.011

( ) ( )
(0.374, 0.251) (0.576, 0.231)
( ) ( )
( ) ( )

wgm, ) (0.044, 0.016) 0.032, 0.012 0.022, 0.009

(
(
(Ué“ . UsY)
(
(AR

AD - AW) (—4.372, 0.135) (—4.372, 0.135) (—4.372, 0.135)

Table 5.1: Coefficients appearing in Eq. (34) for p = 2.5 GeV, p =5 GeV and p = 10 GeV.
For ar,(j2) (in the MS scheme) we used the two-loop expression with 5 flavors and a(my) =
0.119. The entries correspond to the pole top quark mass m; = 174 GeV. The superscript
(0) refers to lowest order quantities and while the superscript (1) denotes the correction
terms of O(a).

the “parameterization” given recently by Bobeth et al. [13], we write

Gen — ( asiﬂ)“’g(é)) (Ao + Ty b2, 8) + Uy (1, 8) + Wy (0, )
_Oés(M) 0) g (9)
. (C D+ VR 4 ADE ) (34)

~ Qg ~ Qg
get (H o m(s)) Ay = 2 (COF® 1 R 1 AV FD).

47
(1 N () "
T

where the expressions for h(m?

~eff
ClO -

,5) and wg($) are given in [13]. The quantities w7(S) and
F 1(72%), on the other hand, have been calculated in the present paper We take the numerical

values for Ay, Ag, Ay, Ty, Uy, and Wy from [13], while C’1 , C’2 and A8 = C’éo woff)
taken from [19]. For completeness we list them in Tab. 5.1.

are

When calculating the decay width (33), we retain only terms linear in «a; (and thus in wy
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and wr) in |5§ff|2 and |5§ff|2 In the interference term Re (57‘3&58&*) too, we keep only

terms linear in ay,. By construction, one has to make the replacements wy — w79 and
w7 — Wwrg in this term.

Our results include all the relevant virtual corrections and singular bremsstrahlung con-
tributions. There exist additional bremsstrahlung terms coming, eg, from one-loop O,
and Oy diagrams in which both the virtual photon and the gluon are emitted from the
charm quark line. These contributions do not induce additional renormalization scale de-
pendence as they are ultraviolet finite. Using our experience from b — sy and b — sg,
these contributions are not expected to be large.

6 Numerical Results

The decay width in Eq. (33) has a large uncertainty due to the factor my .. Following
common practice, we consider the ratio

1 dl'(b — s0T07)
I'b— X.er,) ds ’

unark<§) = (35)

in which the factor mj . drops out. The explicit expression for the semileptonic decay
width I'(b — X, e,) can be found eg in [13].

We now turn to the numerical results for Rguam($) for 0.05 < § < 0.25. In Fig. 6.1a)
we investigate the dependence of Rquak(S) on the renormalization scale p. The solid lines
are obtained by including the new NNLL contributions as explained in detail in Section 5.
The three solid lines correspond to p = 2.5 GeV (lower line), p = 5 GeV (middle line)
and 1 = 10 GeV (upper line). The three dashed lines (again p = 2.5 GeV for the lower,
p =5 GeV for the middle and p = 10 GeV for the upper curve), on the other hand, show
the results without the new NNLL corrections, ie they include the NLL results combined
with the NNLL corrections to the matching conditions as obtained by Bobeth et al. [13].
From this figure we conclude that the renormalization scale dependence gets reduced by
more than a factor of 2. Only for small values of § (§ ~ 0.05), where the NLL u dependence
is small already, the reduction factor is smaller. For the integrated quantity we obtain

0.25
Rquark = / 03 Rynarc(8) = (1.25 +0.08) x 1077 , (36)

0.05

where the error is obtained by varying i between 2.5 GeV and 10 GeV. Before our correc-
tions, the result was Rguark = (1.364+0.18) X 107° [13]. In other words, the renormalization
scale dependence got reduced from ~ +13% to ~ £6.5%.

Among the errors on Rguak($) which are due to the uncertainties in the input parameters,
the one induced by m. = m./m; is known to be the largest. We therefore show in Fig. 6.1b)
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R i 1 & i
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0.05 0.1 0.15 0.2 0.25 0.05 0.1 0.15 0.2 0.25
S S

Figure 6.1: a) The three solid lines show the p dependence of Rqyak($) when including the
corrections to the matrix elements calculated in this Letter. The dashed lines are obtained
when switching these corrections off. We set . = 0.29. b) Rquark($) for m. = 0.27 (dashed
line), m. = 0.29 (solid line) and 7, = 0.31 (dash-dotted line) and p =5 GeV. See text.

the dependence of Ryyark($) on m.. Comparing Fig. 6.1a) with Fig. 6.1b), we find that the
uncertainty due to m, is somewhat larger than the left-over u dependence at the NNLL
level. For the integrated quantity Rguax we find an uncertainty of +7.6% due to m..

To conclude: We have calculated virtual corrections of O(ay) to the matrix elements of Oy,
O3, O7, Og, Og and O19. We also took into account those bremsstrahlung corrections which
cancel the infrared and collinear singularities in the virtual corrections. The renormaliza-
tion scale dependence of Rqyuak(5) gets reduced by more than a factor of 2. The calculation
of the remaining bremsstrahlung contributions (which are expected to be rather small) and
a more detailed numerical analysis are in progress [20].
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ABSTRACT

We present in detail the calculation of the virtual O(ay) corrections to
the inclusive semileptonic rare decay b — s/T¢~. We also include those
O(as) bremsstrahlung contributions which cancel the infrared and mass
singularities showing up in the virtual corrections. In order to avoid large
resonant contributions, we restrict the invariant mass squared s of the
lepton pair to the range 0.05 < s/m? < 0.25. The analytic results are
represented as expansions in the small parameters § = s/m?, z = m2/m?
and s/(4m?). The new contributions drastically reduce the renormal-
ization scale dependence of the decay spectrum. For the corresponding
branching ratio (restricted to the above § range) the renormalization
scale uncertainty gets reduced from ~ +13% to ~ £+6.5%.
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1 Introduction

Rare B decays are an extremely helpful tool for examining the Standard Model (SM) and
searching for new physics. Within the SM, they provide checks on the one-loop structure
of the theory and allow one to retrieve information on the Cabibbo-Kobayashi-Maskawa
(CKM) matrix elements V;5 and V;4, which cannot be measured directly.

The first measurement of the exclusive rare decay B — K™y was obtained in 1992 by
the CLEO collaboration [1]. Somewhat later, also the inclusive transition B — Xy was
observed by the same collaboration [2]. Although challenging for the experimentalists, the
inclusive decays are clean from the theoretical point of view, as they are well approximated
by the underlying partonic transitions, up to small and calculable power corrections which
start at O(A{cp/m;) [3, 4].

The measured photon energy spectrum [5] and the branching ratio for the decay B — X
2, 6, 7] are in good agreement with the next-to-leading logarithmic (NLL) Standard Model
predictions (see eg [8]-[14]). Consequently, the decay B — X7 places stringent constraints
on the extensions of the SM, such as two-Higgs doublet models [10, 15, 16], supersymmetric
models [17]-]22], etc.

B — X, (*¢~ is another interesting rare decay mode which has been extensively considered
in the literature in the framework of the SM and its extensions (see eg [23]-[28]). This
decay has not been observed so far, but it is expected to be measured at the operating B
factories after a few years of data taking (for upper limits on its branching ratio we refer to
29, 30]). The measurement of various kinematical distributions of the decay B — X (¢,
combined with improved data on B — X7, will tighten the constraints on the extensions
of the SM or perhaps even reveal some deviations.

The main problem of the theoretical description of B — X, £/~ is due to the long-distance
contributions from éc resonant states. When the invariant mass /s of the lepton pair is
close to the mass of a resonance, only model dependent predictions for such long distance
contributions are available today. It is therefore unclear whether the theoretical uncertainty
can be reduced to less than £20% when integrating over these domains [31].

However, restricting /s to a region below the resonances, the long distance effects are
under control. The corrections to the pure perturbative picture can be analyzed within the
heavy quark effective theory (HQET). In particular, all available studies indicate that for
the region 0.05 < § = s/m? < 0.25 the non-perturbative effects are below 10% [32]-[37].
Consequently, the differential decay rate for B — X, ¢~ can be precisely predicted in
this region using renormalization group improved perturbation theory. It was pointed out
in the literature that the differential decay rate and the forward-backward asymmetry are
particularly sensitive to new physics in this kinematical window [38]-[40].

Calculations of the next-to-leading logarithmic (NLL) corrections to the process B —
X T~ have been performed in Refs. [24] and [28]. It turned out that the NLL result
suffers from a relatively large (£16%) dependence on the matching scale pyy. To reduce it,
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2. Effective Hamiltonian

next-to-next-to leading (NNLL) corrections to the Wilson coefficients have recently been
calculated by Bobeth et al. [41]. This required a two-loop matching calculation of the
effective theory to the full SM theory, followed by a renormalization group evolution of
the Wilson coefficients, using up to three-loop anomalous dimensions [41, 11]. Including
these NNLL corrections to the Wilson coefficients, the matching scale dependence is indeed
removed to a large extent.

As pointed out in Ref. [41], this partially NNLL result suffers from a relatively large (~
+13%) renormalization scale (11,) dependence [, ~ O(my)] which, interestingly enough, is
even larger than that of the pure NLL result. Recently we showed in a letter [42] that the
NNLL corrections to the matrix elements of the effective Hamiltonian drastically reduce
the renormalization scale dependence. The aim of the current paper is to present a detailed
description of the rather involved calculations and to extend the phenomenological part.
We will discuss in particular the methods which allowed us to tackle with the most involved
part, viz the calculation of the O(«y) two-loop virtual corrections to the matrix elements of
the operators O; and Oy. We also comment on the O(ay) one-loop corrections to O7—0O1g.
Furthermore, we include those bremsstrahlung contributions which are needed to cancel
the infrared and collinear singularities in the virtual corrections. As shown already in
[42], the new contributions reduce the renormalization scale dependence from ~ £13% to
~ +6.5%.

The paper is organized as follows: In Section 2 we review the theoretical framework. Our
results for the virtual O(ay) corrections to the matrix elements of the operators O; and O,
are presented in Section 3, whereas the corresponding corrections to the matrix elements
of O7, Og, Oy and 04 are given in Section 4. Section 5 is devoted to the bremsstrahlung
corrections. The combined corrections (virtual and bremsstrahlung) to b — s¢*T¢~ are
discussed in Section 6. Finally, in Section 7, we analyze the invariant mass distribution of
the lepton pair in the range 0.05 < § < 0.25.

2 Effective Hamiltonian

The appropriate framework for studying QCD corrections to rare B decays in a systematic
way is the effective Hamiltonian technique. For the specific decay channels b — s/¢*(~
(¢ = p, e), the effective Hamiltonian is derived by integrating out the heavy degrees of
freedom. In the context of the Standard Model, these are the ¢ quark, the W boson and
the Z° boson. Because of the unitarity of the CKM matrix, the CKM structure factorizes
when neglecting the combination V;V,,. The effective Hamiltonian then reads

Mot = == ViV 3 Cilr)Oi() (1)

=1
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Following Ref. [41], we choose the operator basis as follows:

O1
Os
Os
Or

Oy

= (ST cr) (e Tr), Oy = (Spyuer)(cybr),
= (527be) 32 (@v"a) O = (S T7b) X (" Tq)

= (Grnmebr) g (@7 %0) s Os = (Se9m 1) 20"y T%) (9

= émb<§Lo’MVbR)Flw, Oy = gismb(gLUuuTabR>GZV’
= (b) L), On = & (07b1) TuBr D).

where the subscripts L and R refer to left- and right- handed components of the fermion

fields.

The factors 1/¢? in the definition of the operators O, Og and Oy, as well as the factor
1/gs present in Og have been chosen by Misiak [24] in order to simplify the organization
of the calculation: With these definitions, the one-loop anomalous dimensions [needed
for a leading logarithmic (LL) calculation] of the operators O; are all proportional to
g%, while two-loop anomalous dimensions [needed for a next-to-leading logarithmic (NLL)
calculation| are proportional to g2, etc.

After this important remark we now outline the principal steps which lead to a LL, NLL,
NNLL prediction for the decay amplitude for b — s/*¢:

1.

70

A matching calculation between the full SM theory and the effective theory has
to be performed in order to determine the Wilson coefficients C; at the high scale
pw ~ my,my. At this scale, the coefficients can be worked out in fixed order
perturbation theory, ie they can be expanded in g2:

2 4

g; g
Cilpw) = O ) + 25 O aw) + 1 23 OO i) +OL) . (3)

At LL order, only C’Z-(O) are needed, at NLL order also CZ-(l), etc. While the coefficient
052), which is needed for a NNLL analysis, is known for quite some time [9], C’ém and
Cfg) have been calculated only recently [41] (see also [43]).

The renormalization group equation (RGE) has to be solved in order to get the
Wilson coefficients at the low scale u, ~ my. For this RGE step the anomalous
dimension matrix to the relevant order in gy is required, as described above. After
these two steps one can decompose the Wilson coefficients C;(u) into a LL, NLL
and NNLL part according to

Qwhﬁﬂm+%gd%mnﬁgyﬂm+m@. (4)




3. Virtual O(ay) Corrections to O; and Oy

3. In order to get the decay amplitude, the matrix elements (s¢7¢~|0;(up)|b) have to
be calculated. At LL precision, only the operator Oy contributes, as this operator
is the only one which at the same time has a Wilson coefficient starting at lowest
order and an explicit 1/¢? factor in the definition. Hence, at NLL precision, QCD
corrections (virtual and bremsstrahlung) to the matrix element of Oy are needed.
They have been calculated a few years ago [24, 28]. At NLL precision, also the other
operators start contributing, viz O7(u,) and Oi() contribute at tree-level and the
four-quark operators Oy, ..., Og at one-loop level. Accordingly, QCD corrections to
the latter matrix elements are needed for a NNLL prediction of the decay amplitude.

The formally leading term ~ (1/¢2)CS” (1) to the amplitude for b — 570~ is smaller
than the NLL term ~ (1/g¢2)[¢2/(1672)] () [23]. We adapt our systematics to the
numerical situation and treat the sum of these two terms as a NLL contribution. This is,

admittedly some abuse of language, because the decay amplitude then starts out with a
term which is called NLL.

As pointed out in step 3), O(as) QCD corrections to the matrix elements (s £1¢~|O;(1)|0)
have to be calculated in order to obtain the NNLL prediction for the decay amplitude. In
the present paper we systematically evaluate virtual corrections of O(cay) to the matrix
elements of O, Oy, O7, Og, Oy and Oq¢. As the Wilson coefficients of the gluonic penguin
operators Os, ..., Og are much smaller than those of O; and O, we neglect QCD corrections
to their matrix elements. As discussed in more detail later, we also include those brems-
strahlung diagrams which are needed to cancel the infrared and collinear singularities from
the virtual contributions. The complete bremsstrahlung corrections, ie all the finite parts,
will be given elsewhere [44]. We anticipate that the QCD corrections calculated in the
present paper substantially reduce the scale dependence of the NLL result.

3 Virtual O(a;) Corrections to the Current-Current
Operators O; and O,

In this section we present a detailed calculation of the virtual O(as) corrections to the
matrix elements of the current-current operators O; and O,. Using the naive dimensional
regularization scheme (NDR) in d = 4 — 2¢ dimensions, both ultraviolet and infrared
singularities show up as 1/€" poles (n = 1,2). The ultraviolet singularities cancel after
including the counterterms. Collinear singularities are regularized by retaining a finite
strange quark mass mg. They are cancelled together with the infrared singularities at the
level of the decay width, taking the bremsstrahlung process b — s¢*/~g into account.
Gauge invariance implies that the QCD corrected matrix elements of the operators O; can
be written as

(s C707|04) = F7{O0) e + F{Or)trce (5)
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Figure 3.1: Complete list of two-loop Feynman diagrams for b — sy* associated with the
operators O; and Oy. The fermions (b, s and ¢ quarks) are represented by solid lines,
whereas the curly lines represent gluons. The circle-crosses denote the possible locations
where the virtual photon (which then splits into a lepton pair) is emitted.

where (Og)iree and (O7)ee are the tree-level matrix elements of Oy and O, respectively.
Equivalently, we may write

Qg ~ ~
<S €+€_|Ol|b> == —E |:FZ(9) <09>tree + F;U) <O7>tree ) (6)
where the operators 57 and 59 are defined as
~ Qg ~ Qg
072507, Og:ﬂOg- (7)

We present the final results for the QCD corrected matrix elements in the form of Eq. (6).

3.1 Regularized O(a;) Contribution of O; and O,

The full set of the diagrams contributing to the matrix elements
M; = (st |O4|b) (i =1,2) (8)

at O(ay) is shown in Fig. 3.1. As indicated in this figure, the diagrams associated with
O; and O, are topologically identical. They differ only by the color structure. While the
matrix elements of the operator O, all involve the color structure

N2 -1
2N, ’

Y TT =Cpl, Cp= (9)
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there are two possible color structures for the corresponding diagrams of Oy, viz

7 =Y TT’T*T" and =) T°T'T'T" (10)

a,b a,b

The structure 7, appears in diagrams 3.1a)-d) and 7» in diagrams 3.1e) and 3.1f). Using
the relation

o 1 1
; TosTs = TN, Oaplys + 5 0as08ys

we find that 7y = C,1 and 7 = (7,1 with

Ne -1 (N2 -1)°
07—1 = — 4N62 and 07—2 = 4—]\[02
Inserting N, = 3, the color factors are C'p = %, C, = —% and C}, = 1796. The contributions

from O; are obtained by multiplying those from O, by the appropriate factors, ie by
C,/Cpr= —% and C,,/Cp = %, respectively. In the following descriptions of the individual
diagrams we therefore restrict ourselves to those associated with the operator Os.

In the current paper we use the MS renormalization scheme which is technically imple-
mented by introducing the renormalization scale in the form 1% = pu?exp(yg)/(4 ), fol-
lowed by minimal subtraction. The precise definition of the evanescent operators, which is
necessary to fully specify the renormalization scheme, will be given later. The remainder
of this section is divided into 8 subsections. Subsections 3.1.1-3.1.6 deal with the diagrams
3.1a)-d) which are calculated by means of Mellin-Barnes techniques [45]. Subsection 3.1.7
is devoted to the diagrams 3.1e), which are evaluated by using the heavy mass expansion
procedure [46]. Among the diagrams 3.1f) only the one where the virtual photon is emit-
ted from the charm quark line is non-zero. As it factorizes into two one-loop diagrams, its
calculation is straightforward and does not require to be discussed in detail. It is, how-
ever, worth mentioning already at this point that it is convenient to omit this diagram in
the discussion of the matrix elements of O; and Oy and to take it into account together
with the virtual corrections to Og. Finally, in Subsection 3.1.8, we give the results for the
dimensionally regularized matrix elements (s ¢*¢~]O;|b) (i = 1,2).

3.1.1 The Building Blocks Ig and J,gs
For the calculation of diagrams 3.1a)-d) it is advisable to evaluate the building blocks

I3 and J,p first. The corresponding diagrams are depicted in Fig. 3.2. After performing
a straightforward Feynman parameterization followed by the integration over the loop
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b 01,2 S b 01,2 S b

m-)('
9999999
=
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=

Figure 3.2: The building blocks I and J,3 which are used for the calculation of the two-loop
diagrams 3.1a)-d). The curly and wavy lines represent gluons and photons, respectively.

momentum, the analytic expression for the building block /3 reads

Js € € LTTE >\
Iy = —12 [(e) p* e (1 —¢)e (7“57—7"27@ L§
2 —€

></0ala:[x(1—a:)}1E T2_3:(1L—C+w , (11)

x)

where r is the momentum of the virtual gluon emitted from the c-quark loop. The term i 6

is the “i € prescription”. In the full two-loop diagrams, the free index (3 will be contracted

with the corresponding gluon propagator. Note that Iz is gauge invariant in the sense that
Bl3=0

rig .

The building block J,5 is somewhat more complicated. Using the notation introduced by
Simma and Wyler [47], it reads

egs Qu
16 72

. . Ta .
Jaﬁ - E(Q7B7T>Al5 +E(&757Q)A26 - E(ﬁ,?”, Q)quZQ?)

r . . o A A
—E(Oéa r, Q)—ﬁ Atgs — E(Oéa r, Q)q—ﬂ At — E(@ r, Q)q— Aigr | L =, (12)
q-r q-r q-r 2

where ¢ and r denote the momenta of the (virtual) photon and gluon, respectively. The
indices a and [ will be contracted with the propagators of the photon and the gluon,
respectively. The matrix F(a, 3,7) is defined as

B, 6,7) = 3 (57—~ 175%0) (13)
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3. Virtual O(ay) Corrections to O; and Oy

and the dimensionally regularized quantities Aiy occurring in Eq. (12) read

Aiy = 4B+/Sd:cdy [4(gr)zy(l—z)e+r*z(1l—a)(1—2x)e

+¢*y(2 -2y +2zy—a)e+ (1-32)C] O,

Aig = 4B*/dedy [—4(g-r)zy (1 —y)e —*y (1 —y)(1 —2y)e

—r*z(2-2x+42zy—y)e— (1-3y)C] C',

Aiys = —Niyg =8BT(q-r) /d:cdyxyeCle,
S
Nigs = —8]3*(q-7’)/dxdy:c(1—x)e€16,
S
Aigy; = 83*(q-r)/dxdyy(1—y)e€1€, (14)
s

where BT = (1 + ¢)I'(¢) €2 and C is given by
C=m:=2zy(gr)—r’z(1-z) -yl —y).

The integration over the Feynman parameters x and y is restricted to the simplex S, ie
y € 10,1 —z], x € [0,1]. Due to Ward identities, the quantities Aij are not independent of
one another. Namely,

“Jos =0 and 1°J,5 =

imply that Ais and Aig can be expressed as

2 2
Ai5 = Aigg -+ q— Ai27; AZG = r— Ai25 + Aigﬁ. (15)
q-r q-r

3.1.2 General Remarks

After inserting the above expressions for the building blocks I3 and J,p into diagrams
3.1a), b) and 3.1c), d), respectively, and introducing additional Feynman parameters, we
can easily perform the integration over the second loop momentum. The remaining Feyn-
man parameter integrals are, however, non-trivial. In Refs. [12] and [48], where the anal-
ogous corrections to the processes b — sv and b — sg were studied, the strategy used to
evaluate these integrals is the following:

e The denominators are represented as complex Mellin-Barnes integrals (see below and
Refs. [12, 48]).
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e After interchanging the order of integration and appropriate variable transformations,
the Feynman parameter integrals reduce to Euler # and I" functions.

e Finally, by Cauchy’s theorem the remaining complex integral over the Mellin variable
can be written as a sum over residues taken at certain poles of § and I' functions.
This leads in a natural way to an expansion in the small ratio z = m?/m?.

However, this procedure cannot be applied directly in the present case: While the processes
b — sy and b — sg are characterized by the two mass scales m;, and m,, a third mass
scale, viz ¢?, the invariant mass squared of the lepton pair, enters the process b — s¢*¢~.
For values of ¢* satisfying

most of the diagrams allow a naive Taylor series expansion in ¢? and the dependence of
the charm quark mass can again be calculated by means of Mellin-Barnes representations.
This method does not work, however, for the diagram in Fig. 3.1a) where the photon is
emitted from the internal s quark line. Instead, we apply a Mellin-Barnes representation
twice, as we discuss in detail in Subsection 3.1.4. Using these methods, we get the results
for diagrams 3.1a)-d) as an expansion in § = ¢>/m?, z = m?/m} and 5/(4 z) as well as
In(s) and In(z). This implies that our results are meaningful only for small values of s.
Fortunately, this is exactly the range of main theoretical and experimental interest in the
phenomenology of the process b — s¢+(~.

3.1.3 Calculation of Diagram 3.1b)

We describe the basic steps of our calculation of the diagram in Fig. 3.1b) where the photon
is emitted from the internal b quark line. Our notations for the momenta are set up in
Fig. 3.3a). Inserting the building block I3 yields the following analytic expression for this
diagram:

1

My[1b] = 10Qug o T(€)eX = (1 — ¢) e™ (4 7)" /dm

472

1—x)}1_6
r2 —m2/ z(l — )] —l—ié]e

0

/(d—rﬂ(p’)(w—r?w)ﬂ grytm ¢+7/+mb27ﬂ“(p)'i- (16)

27y W17 —m2 " (o) — 2 2
Applying a Feynman parameterization according to
1 _TB+e / dudv dy y* (17)
Dy D, D3 Dy L(e) Js [UJD1+"0D2+(1—u—v—y)ngLyD4]3Jre ’
with
Dy = (p +7)* —my, Dy = (p+r)* —mj, (18)
D5 = r?, Dy=1*—m?2/[z(1 —2)], (19)
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p Oq p P P
- . o
&=
% T l—r
2, _
AN
a) b)

Figure 3.3: a) Momentum flow in diagram 3.1b), where the virtual photon is emitted from
the internal b quark line (see Subsection 3.1.3); b) Momentum flow in the vertex correction
diagram in Fig. 3.1e) (see Subsection 3.1.7).

and performing the integral over the loop momentum r, we obtain

_eQag;

64 74
1

Ms[1b) = (1 — €)CrT(2€)e®1=e e x

- TP P PA
/dx [:U(l—x)]l /dvdudyy La(p) A;i2€+A§5+ ngb u(p), (20)

0 S

where the Feynman parameters u, v and y run over the simplex S, i.e u,v,y > 0 and
u+v+y < 1. P, P, and P5 are polynomials in the Feynman parameters, and the quantity
Ay reads
mzy

r(l—x)’
For ¢ < m? it is positive in the integration region. Therefore, one is allowed to do a naive
Taylor series expansion of the integrand in ¢2. In order to simplify the resulting Feynman
parameter integrals, it is convenient to first transform the integration variables x, y, u and
v according to

/ / !/ !/ /
(1—=V)(-1+v+) U_)(l—v)(l—u)

Y

Ay =mi(u+uv+v?) —Fuv+

u —

" o , x—a, y—y.
The integration region of the new variables is given by «' € [1 — ¢/, 1] and v/, 2,y € [0, 1].
Taking the corresponding Jacobian into account and omitting primes in order to simplify

the notation, we find

eQag’

Ma[1] = — 64 m4

(1 — €)CrpT(2€) ey x

1

1 1 1
1—e — _ Ql Q2 Q3Ab

7
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where, in terms of the new variables, A, reads

2 (1wl —v—uw(d-u) , vy
Ay =mj(1 —v)u+q 2 +mcx(1—x)'

@1, Q2 and @3 are rational functions in the new Feynman parameters. After performing
the Taylor series expansion in ¢?, the remaining integrals are of the form

1 1

/das dv dy / du [x(1—2)] " (vy) (1 —v)

0 1—v

1P

1 (:c,y,gt,v) 7 (22)
oA

where P(x,y,u,v) is a polynomial in z, y, u and v; Ayg = Ay(¢?> = 0). n and m are
non-negative integers. We further follow the strategy used in [12, 48] and represent the

denominators Ag\,o as Mellin-Barnes integrals. The Mellin-Barnes representation for (K2 —
M?)=* reads (A > 0)

1 1 1 1 M2\°*
(K2 — M2)> - (KX T(\) 24 /dS (‘ﬁ) [(=s)T(A+s). (23)

Y

The integration path v runs parallel to the imaginary axis and intersects the real axis
somewhere between —\ and 0. The Mellin-Barnes representation of Ab/\,o is obtained by
making the identifications

K* <~ miu(l—v) and M? < —m2yv/[z(l—2)].

Interchanging the order of integration, it is now an easy task to perform the Feynman
parameter integrals since the most complicated ones are of the form

1

/da a”? (1 —a)"® = B(p(s) +1,q(s) +1). (24)

0

The integration path v has to be chosen in such a way that the Feynman parameter
integrals exist for values of s € v. By inspection of the explicit expressions, one finds that
this is the case if the path 7 is chosen such that Re(s) > —e. (Note that in this paper €
is always a positive number). To perform the integration over the Mellin parameter s, we
close the integration path in the right half-plane and use the residue theorem to identify
the integral with the sum over the residues of the poles located at

s = 0,1, 2 3, ...,

s = 1l—€ 2—€ 3—¢€ ...,

s = 1—2¢ 2—2¢, 3—2, ...,

s = 1/2—2¢ 3/2—2¢ 5/2—2¢, .... (25)
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3. Virtual O(ay) Corrections to O; and Oy

In view of the factor (m?/m?)*, stemming from the Mellin-Barnes formula (23), the eval-
uation of the residues at the pole positions listed in Eq. (25) corresponds directly to an
expansion in z = m2/m?. Note that closing the integration contour in the right half-plane
yields an overall minus sign due to the clockwise orientation of the integration path. After
expanding in €, we get the form factors of M;[1b] [see Eq. (6)] as an expansion of the form

FyP ) = el 52 ™ (2), (26)

2,ilm
i,l,m

where ¢ and m are non-negative integers and [ is a natural multiple of § [see Eq. (25)].
Furthermore, the power m of In(z) is bounded by four, independent of the values of i and
[. This becomes clear if we consider the structure of the poles. There are three poles in
s located near any natural number k, viz at s = k, s = k — ¢ and s = k — 2¢. Taking
the residue at one of them yields a term proportional to 1/€* from the other two poles.
In addition, there can be an explicit 1/e? term from the integration over the two loop
momenta. Therefore, the most singular term can be of order 1/¢* and, after expanding in
¢, the highest possible power of In(z) is four.

3.1.4 Calculation of Diagram 3.1a)

To calculate the diagram in Fig. 3.1a) where the photon is emitted from the internal
s quark, we proceed in a similar way as in the previous subsection, ie we insert the build-
ing block I3, introduce three additional Feynman parameters and integrate over the loop
momentum r. The characteristic denominator A, is of the form

Ay = (Am; +Bq¢*+Cm. +i0)

and occurs with powers 2¢ or 1 + 2e. The coefficients A, B and C are functions of the
Feynman parameters. After suitable transformations, they read

y(1—v)

— _ — 2 — [ R
A=uv(l—v), B=uv(l—u), C w(1=2)’

with w, v, x, y € [0,1]. From this we conclude that the result of this diagram is not
analytic in ¢2. We are therefore not allowed to Taylor expand the integrand. Instead, we
apply the Mellin-Barnes representation twice and write

e o A [t O

The integration paths v and 7/ are again parallel to the imaginary axis and —\ < Re(s) <
Re(s") < 0. X takes one of the two values 2¢ and 1+ 2e. We have written Eq. (27) in such
a way that non-integer powers appear only for positive numbers, ie we made use of the
formula

(x£i0)* =™ (—x Fi0)".
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As in the preceding subsection, the exact positions of the integration paths v and +' are
dictated by the condition that the Feynman parameter integrals exist for values of s and
s’ lying thereon. For A = 2¢, we find that these integrals exist if

—e < Re(s) < Re(s") < 0.

Closing the integration contour for the s and s’ integration in the left and right half-plane,
respectively, and applying the residue theorem results in an expansion in § and z. As
Re(s’) > Re(s), the term I'(s’ — s) in Eq. (27) does not generate any poles. For A = 2¢, the
poles which have to be taken into account are located at

sS=1—¢€2—¢ 3—¢ ..., s=—€ —1—€ —2—¢ ...,
§=1-—2¢ 2—2¢ 3—2¢, ..., s=—2¢ —1—2 —2-—2¢ ...,
§=0 1,2 .. .

For A =1 4 2¢, we find that the Feynman parameter integrals exist if
—e<Re(s) <0 and —1—e<Re(s) < —2e.

This condition implies that the poles at s = —e, —2¢ in the above list must not be taken
into account when applying the residue theorem.

The final result for the form factors [Eq.(6)] of this diagram is of the form

F2(7’9)[1a] _ Z 0(7,9) §z 111J<§) Zl lnm(z), (28)

i7j7l7m
i7j7l7m

where i, j, [ and m all are non-negative integers. The remaining four diagrams in Fig. 3.1a)
and b) exhibit no further difficulties.

3.1.5 Calculation of Diagrams 3.1c)

Inserting the building block J,z allows us to calculate directly the sum of the two diagrams
shown in Fig. 3.1c). After performing the second loop integral, one obtains
eQu 93 OF 2vge , de 2ime
W(l +€)T'(2¢) e p e
Ue(l—U)lJre(l—Zlf) _ P1 PQ PgAc
/ da dy du dv o™ u(p') N Ry u(p), (29)

where P, P, and P; are polynomials in the Feynman parameters, which all run in the
interval [0,1]. A, reads [using v' = v(1 — u)]

Mg[lC] =

U/

s {mt = - - v - )

A, =miuv'y— Gy (ut+yv) —
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Note that we do not expand in ¢ at this stage of the calculation. Instead, we use the
Mellin-Barnes representation (23) with the identification

!/

K* e~ mjuv'y and M? <« ¢*yv (u+yv’)—i—ﬁ{mg—(fy(l—x)[1—y(1—x)}}.

This representation does a good job, since (—M?/K?)” turns out to be analytic in ¢> for
§ < 4z, as in this range M?/K? is positive for all values of the Feynman parameters. We
therefore do the Taylor expansion with respect to ¢? only at this level. Evaluating the
Feynman parameter integrals as well as the Mellin-Barnes integral, we find the result as
an expansion in z and §/(4 z) which can be cast into the general form

FP e =Yl 82 I (z), (30)
i,l,m
where ¢ and m are non-negative integers and | = —i, —i + %, —i+1,....

3.1.6 Calculation of Diagrams 3.1d)

After inserting the building block J,3 and performing the second loop integral, the sum of
the diagrams in Fig. 3.1d) yields

eQu g? C’F

256 74
Ve N P, Py,
dxdy/dudv—eu(p){ e }u(p), (31)
S/ J [2(1 — )] o At A Aj

where Py, P, and P3 are polynomials in the Feynman parameters z, y, u and v. The
parameters (x,y) and (u,v) run in their respective simplex. The quantity A, reads

1—vy) m2 v
A, = 2 yv 2 yv u _( c )
¢ mbu<u+1_x)+qyv{(l_x)2+1_$ z(1—x) +x(1—x)

Ms[1d) = (14 €) T'(2¢) e*Eepte

Next, we use the Mellin-Barnes representation (23) with the identification

1-y) mg v
K2 2 YO ) MPe g o v "

Again, (—M?/K?)® is analytic in ¢* for § < 42z, which allows us to perform a Taylor
series expansion with respect to ¢?. In order to perform the integrations over the Feynman
parameters, we make suitable substitutions, eg

N R N ()

, v—ud, u—d(1=0). (32)
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The new variables 2/, v/, v" run in the interval [0, 1], while ¢’ varies in [1 — ¢/, 1]. Evaluating
the integrals over the Feynman and Mellin parameters, we find the result as an expansion
in z and §/(4 z) which can be cast into the general form

F™1d) = Z 6271197; 2 In™(2). (33)

i,l,m

1 and m are non-negative integers and [ = —i, —i + %, —1+1,....

3.1.7 Calculation of Diagram 3.1e)

We consider one of the diagrams in Fig. 3.1e) in some detail and redraw it in Fig. 3.3b).
The matrix element is proportional to 1/A., where

A, = [(l —7)? - mﬂ [(l e mﬂ [(l —q)* — mz] [l2 — mﬂ r2. (34)

q is the four-momentum of the off-shell photon, while [ and r denote loop momenta. As
¢®> < 4m? in our application, we use the heavy mass expansion (HME) technique [46]
to evaluate this diagram. In the present case, as the gluon is massless, the HME boils
down to a naive Taylor series expansion of the diagram (before loop integrations) in the
four-momentum ¢. Expanding 1/A, in ¢, we obtain

(@®) (q-r) (q-1)*

Ci(n, m,i, j, k) . . (35)
m;:] N r2 (12 —=m?]" [(1 —r)?> —m2]
Using the Feynman parameterization
1 1—ov)n !
] I'(n —l— m) dv 11 —w) . (36)
(12— m2]" [(1 = r)2 —m2]™ (m) ) 2—20(l-r) —m2+vr?]

we can perform the integration over the loop momentum [. The integral over the loop
momentum 7 can be done using the parameterization

P 1
1 1 (1 p-1
1 B +p>/ U _du. (37)
P\rg) T (e )
)

v(1—v) 0 v(i—v

The remaining integrals over the Feynman parameters u and v all have the form of Eq. (24)
and can be performed easily. The other two diagrams in Fig. 3.1e) where the virtual photon
is emitted from the charm quark can be evaluated in a similar way. The diagrams where
the photon is radiated from the b quark or the s quark vanish.
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As the results for the sum of all the diagrams in Fig. 3.1e) are compact, we explicitly give
their contribution to the form factors F.” (a =1,2; 5 =7,9). We obtain Fam[le] =0,
F91e] = %Fég)[le] and

4e A ~ 2 3
1(8 128 [/ s 256 [ & 2048
F(g) 1 _ I 119
2 [Le] <m 37 \az) T \az) T 4z

- £4+12416 i 1107 5 2_4971776 3 (39)
27 ' 3645 \4z 4z 4465125 4 '

3.1.8 Unrenormalized Form Factors of O; and O,

We stress that the diagram 3.1f) where the virtual photon is emitted from the charm quark
line is the only one in Fig. 3.1 which suffers from infrared and collinear singularities. As this
diagram can easily be combined with diagram 4.1b) associated with the operator Oy, we
take it into account only in Section 4.1, where the virtual corrections to Og are discussed.

The unrenormalized form factors Fy” of (s +0~|0,[b) (a = 1,2), corresponding to dia-
grams 3.1a)-3.1e), are obtained in the form

Z Ca7z§)l)m5 In’(8) 2 In™(2),

i,5,l,m

where ¢, j and m are non-negative integers and [ = —1, —i—l—%, —i+1,... . We keep the terms
with ¢ and [ up to 3, after checking that higher order terms are small for 0.05 < § < 0.25,
the range considered in this paper. As we will give the full results for the counterterm
contributions to the form factors in Section 3.2 and the renormalized form factors in Sec-
tion 3.3 and in Appendix B, it is not necessary to explicitly present the somewhat lengthy
expressions for the unrenormalized form factors. But, in order to demonstrate the can-
cellation of ultraviolet singularities in the next section, we list the divergent parts of the
unrenormalized form factors: Flm, Fl(g), F2(7) and F2(9)

9 _ 128

2div T R1¢2  925515¢ (

1890 + 1260 im + 5040 L, — 1260 L + 2525 + 27 8° + 45°)

. AN 2 A\ 3
$
420 + 2520 L, — 1260 L., + 2016 1296 1024 | —
T 2835 * * (4 ) * <4z) * (42) ] ’
7 92
2(,d)iv = 81 € ? (39&)
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9 64 . . 2 23
Fiaw= "33 T merine (1890 + 1260 im + 5040 L, — 1260 L, + 2525 + 278> + 45°)
4 085425201, — 1260 L, — 7056 [ = ) — 6480 (= T ress [ —- 3
8505 € K ? 4z 4z 4z ’
46
F(7)~ - _ b
Ldiv 243 ¢’ (39b)
where L, = In(3), L, = In(2), L, = ln(m-’ib) and 2 = 5

3.2 O(as) Counterterms to O; and O,

So far, we have calculated the two-loop matrix elements (s ¢T¢~|C; O;|b) (i = 1,2). As the
operators mix under renormalization, there are additional contributions proportional to
C;. These counterterms arise from the matrix elements of the operators

12

Z 5Z”Oj ; 1= 1, 2, (40)

Jj=1

where the operators O;-Oqq are given in Eq. (2). O;; and O are evanescent operators,
ie operators which vanish in d = 4 dimensions. In principle, there is some freedom in
the choice of the evanescent operators. However, as we want to combine our matrix ele-
ments with the Wilson coefficients calculated by Bobeth et al. [41], we must use the same
definitions:

On = (.77 Yo T er) (CLy" "y Tr) — 16 Oy, (41)

O12 = (5L mecr) (Coy'y"y7br) — 16 O . (42)
The operator renormalization constants Z;; = d;; + 0Z;; are of the form

Qs a?

1 1 1
_ 01 11 S 02 12 22 3

47

Most of the coefficients aj* needed for our calculation are given in Ref. [41]. As some are
new (or not explicitly given in [41]), we list those for : = 1,2 and j =1, ...,12:

) %1 0 —
a't = : (44a)

o
o
o
o

|

=
o

e
Nell N}
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al2 — _ 58 12 _ 64 22 _ 1168
17 7™ 243> 19 — 7290 19 = 243 »
(44b)
12 __ 116 12 __ 776 22 __ 148
A7 = 81> @290 = 43> @29 = 37 -

We denote the counterterm contributions to b — s¢*¢~ which are due to the mixing of O,

or Oy into four-quark operators by Fici(zuark and E(i(zéuark. They can be extracted from
the equation

Qg 1 _ Qg ct(7 ~ ct(9 2
Z <E> - ag (s 0707|0;|b)1100p = — <E> [Fii(4()1uark<07>tree + ‘Fiilegluark<09>tree:| . (45)

J

where j runs over the four-quark operators. As certain entries of a'! are zero, only the
one-loop matrix elements of Oy, Oy, Oy, O1; and Oq are needed. In order to keep the
presentation transparent, we relegate their explicit form to Appendix A.

The counterterms which are related to the mixing of O; (i = 1,2) into Oy can be split into
two classes: The first class consists of the one-loop mixing O; — Oy, followed by taking
the one-loop corrected matrix element of Og. It is obvious that this class contributes
to the renormalization of diagram 3.1f). As we decided to treat diagram 3.1f) only in
Section 4.1 (when discussing virtual corrections to Oyg), we proceed in the same way with the
counterterm just mentioned. There is, however, a second class of counterterm contributions
due to O; — Oy mixing. These contributions are generated by two-loop mixing of O,
into Og as well as by one-loop mixing and one-loop renormalization of the g4 factor in the
definition of the operator Og. We denote the corresponding contribution to the counterterm
form factors by FO7 and F). We obtain

1—9 1—9

22 12 1
ct(9) Q9 Q9 azg Bo ct(7)
F;;—>9 - < 62 + € ) - 62 ) F‘i—»g - 07 (46)

where we made use of the renormalization constant Z,, given by
2
Zgg=1——"——, 60:11—51\/}, Ny =5. (47)
€

Besides the contribution from operator mixing, there are ordinary QCD counterterms. The
renormalization of the charm quark mass is taken into account by replacing m. through
Zm. + M, in the one-loop matrix elements of O; and Oy (see Appendix A). We denote the

corresponding contribution to the counterterm form factors by F°" and F*9 - We

i,Meren i,meren’
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obtain

Fct(?) _ Fct(7) _ O,

1,mcren 2, mcren
4
ct(9 ct
Fl,r(nc)ren - g F2 7‘(n,c)ren )
ct(9) 32

2,meren 045 ¢

. AN 2 <\ 3
5 5 s
1 4 — 2 — 4 —
05+ 8 <4z)+7 (4z) +6 <4z>]
32 S 1
1 1260 In — 1008 In —
~ 9835 [05+ 60 nmc+(4z) (336+ 008 nmc)

N 2 A 3
() (396 +86am )+ () (416 +768m L )|, (48)
42 mc 42 mC

where we have used the pole mass definition of m, which is characterized by the renormal-
ization constant

s 43
I =1-752 |2+ 6m (L) +af. 49
47 3 { omn) T ] (49)
If one wishes to express the results for FZC;S )ren in terms of the MS definition of the charm

quark mass, the expressions in Eqgs. (48) get changed according to

FO L BAO) AR

7, meren 7,M¢ ren 1,mcren ? (50)

where AF®®)  reads

1,Mc 1'81’1

AF11Ctmcren = AFWZCthren ) (51)
64 5 5\ 2 5\?° w2
AFS® 105 + 84 72 64 [ — In— + 2.
2,mceren 945 + (4 )‘l’ (42) + (42) ] (nmc+3)

We stress at this point that we always use the pole mass definition in the following, ie
Egs. (48) for Fe

7,Mcren’

The total counterterms F; ct(j)

are given by

(1 =1,2; j = 7,9) which renormalize diagrams 3.1a)-3.1e)

F,Ct(j) — FCt(J) + FCt() + FCt(J) ] (52)

% i—4quark 2,Meren
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Explicitly, they read

ct(9
B = P~ SeatE 9740+ 2520 7% — 840 i
+ 840 L, (19 — 3im — 54 L, +48L,) + 3780 L.(—2+ 3 L.)
+ 420 L (3im +2+6L,) —630 L2 +2525(1 —2L,) —54 L, 8 —28 (1+4L,)
~ A 2
S
4 18L,—9L, —1 ) (10L, 5L
+ 60 8(42)(8 = 9L, )—|—7776<4z> (10L, — 5L, +3)
§ 3
+ 1536 (4—) (42L, —21L,+19)|,
z
B0 = — Byt ez (BA0L, + 708+ 78+ 8°),

O = FO 4 — 62300 — 840 i + 2520 7

76545

+ 840 L,,(—3im — 54 L, + 48 L, — 791) + 3780 L.(3 L. + 88)
+ 420 Ly(3im +2+6L,) — 630 L2 + 3(252 — 504 L,,) — 548 L, — 28*(1 + 4 L,,)

~ ~ 2
— 6048 (41) (284 90 L, — 45 L.) — 7776 (41) (27+62L, —31L.)
z z

~ 3
— 768 (4i) (295 + 564 L,, — 282 LZ)] ,
z

1
FMO — 0~ (840 L, + 705+ 735 53
1 1,div 8505 ( + S+ s +s ) ( )
The divergent parts of these counterterms are, up to a sign, identical to those of the
unrenormalized matrix elements given in Eq. (39a), which proves the cancellation of ultra-
violet singularities.

As mentioned before, we will take diagram 3.1f) into account only in Section 4.1. The same
holds for the counterterms associated with the b and s quark wave function renormalization
and, as mentioned earlier in this subsection, the O(ay) correction to the matrix element of
0Z;90q. The sum of these contributions is

11
Qs Qg

5Z¢<O >1 loop T 7 A

; [6Z(Og)tree + (Oo)1toop| » 02y = \/Zw(mb)Z¢(ms) -1,

and provides the counterterm that renormalizes diagram 3.1f). We use on-shell renormal-
ization for the external b and s quark. In this scheme the field strength renormalization
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constants are given by

as 4 rpuN2e /1 2
7 :1___(—> -4+ = +4). 54
w(m) 47 3 \m (6 +61R+ ) (54)

So far, we have discussed the counterterms which renormalize the O(a;) corrected matrix
elements (s (T¢7|O;]b) (i = 1,2). The corresponding one-loop matrix elements [of O(a?)]
are renormalized by adding the counterterms

a, a”

<09>tree

AT €

3.3 Renormalized Form Factors of O; and O,

We decompose the renormalized matrix elements of O; (i = 1,2) as

1O Ay O (O
(s 1CP0b) = 0 (= 12) [FP(O)uee + F™ (Orhuee] (55)

where 59 = 7= Oy and 57 = 7= Oy. The form factors Fi(g) and Fl-m, expanded up to 5 and
23, of the renormalized sum of diagrams 3.1a)-e) read [L. = In(m./my,) = In(rh,) = L./2]

Va5

729 243 27 243 1215 135

4 8 —92 ~D 16 32 -3 A3 256 2 (9)
- = L, &+ — = L —— L+ 56
+ (2835 315 - ) we (76545 8505 : > we 243 H i (56)

1424 16 64 16 16 32
Fl(g) = (_—+_i7r+_Lc> Ly = 55 Ly Ls + (— ~ Jar 1) Ly

256 32 128 32 32 64
Fé‘”:( ——7r——Lc>Lu+ LL+<—_+_ZI)LW§

243 81 9 81 405 45
8 16 L\ . . 32 64, 512
LI AN ) [P+ I 57
+(945+105 )“S+(2%w+%%z) S’ 60
(m _ 208 (7) (n _ 416 g

The analytic results for fl(g), flm, f2(9), and f2(7) are rather lengthy. We decompose them
as follows:

Z H(z zglm Al L] Zl Lm + Z pa 2] AZ Lg (59)

i,5,l,m
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e = 0.25 e = 0.29 e = 0.33
k9(0,0) —12.715+ 0.094699 i —11.973+0.16371 4 —11.355+0.192171
E2(0,1)  —0.078830 — 0.074138 —0.081271 — 0.059691i  —0.079426 — 0.043950 i
KV (1,0) —38.742 — 0.678621 —928.432 — 0.25044 i —21.648 — 0.063493 i
EP(1,1)  —0.039301 — 0.000172587  —0.040243 +0.0164427  —0.029733 +0.031803 4
K (2,0) —103.83 — 2.5388 i —57.114 — 0.86486 i —33.788 — 0.24902 i
E7(2,1)  —0.044702 4 0.00262837  —0.035191 +0.0279097  —0.0020505 + 0.040170 4
K (3,0) —313.75 — 8.4554 —128.80 — 2.5243 i —59.105 — 0.72977 i
(3,1)  —0.051133 4 0.022753 —0.017587 + 0.050639 i 0.052779 + 0.038212 i
k70,00 —0.76730 — 0.114181 —0.68192 — 0.074998 i —0.59736 — 0.044915 i
K7(0,1) 0 0 0
E7(1,0)  —0.28480 — 0.18278 —0.23935 — 0.12289 —0.19850 — 0.081587 i
E7(1,1)  —0.0032808 + 0.020827 i 0.0027424 4+ 0.0196767  0.0074152 + 0.016527 ¢
k7 (2,0) 0.056108 — 0.23357 i —0.0018555 — 0.17500 i —0.039209 — 0.12242i
K7 (2,1) 0.016370 +0.020913 i 0.022864 +0.011456 i 0.022282 + 0.00062522 i
k7 (3,0) 0.62438 — 0.027438 i 0.28248 — 0.12783 i 0.085946 — 0.11020 i
K7 (3,1) 0.030536 + 0.0091424 i 0.029027 — 0.0082265i  0.012166 — 0.0197724

Table 3.1: Coefficients in the decomposition of fl(g) and f1(7) for three different values of
me. See Eq. (60).

The quantities pl(lsz collect the half-integer powers of z = m?/mj = m2. This way, the
summation indices in the above equation run over integers only. We list the coefficients
/i((fzjlm and pgsz in Appendix B.

If we give the charm quark mass dependence in numerical form, the formulas become
simpler. For this purpose, we write the functions féb) as

="KV )L (a=1,20=7,9i=0,..3;j=0,1). (60)

1,

The numerical values for the quantities kD (i, 7) are given in Table 3.1 and 3.2 for m,. = 0.25,
0.29, 0.33. For numerical values corresponding to m. = 0.27, 0.29, 0.31 we refer to Tables
I and IT (Tables 3.1 and 3.2 in Part IT of this thesis) in the letter version [42].
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e = 0.25 The = 0.29 e = 0.33

(0, 0) 9.5042 — 0.56819 i 6.6338 — 0.98225 i 4.3035 — 1.15304
k2(0,1) 0.47298 + 0.44483 i 0.48763 + 0.35815 i 0.47656 + 0.26370 i
K9(1,0) 7.4238 4+ 4.0717i 3.3585 + 1.5026 i 0.73780 4 0.38096 i
KV (1,1) 0.2358140.00103557  0.24146 —0.0986495  0.17840 — 0.19082 i
K(2,0) 0.33806 + 15.233 i —1.1906 + 5.1892 i —2.3570 + 1.4941
KV (2,1) 0.26821 — 0.015770 i 0.21115—0.167457  0.012303 — 0.241021
(3, 0) —42.085 + 50.7321 —17.120 + 15.146 i —9.2008 + 4.3786 i
K (3,1) 0.30680 — 0.13652 i 0.10552 — 0.303837  —0.31667 — 0.22927
k$7(0,0) 4.6038 +0.68510 4 4.0915 4 0.44999 i 3.5842 4 0.26949 i
kD (0,1) 0 0 0

kKD (1,0) 1.7088 4 1.0967 i 1.4361 4 0.737321 1.1910 4 0.48952
KD (1,1) 0.019685 — 0.124967  —0.016454 — 0.118067  —0.044491 — 0.099160 4
K7 (2,0) —0.33665 + 1.4014 0.011133 +1.0500 i 0.23525 + 0.73452 i
K7 (2,1) —0.098219 — 0.12548 i —0.13718 — 0.068733i  —0.13369 — 0.0037513 i
k7 (3,0) —3.7463 +0.16463 i —1.6049 +0.76698i  —0.51568 + 0.66118 i
K7 (3,1) —0.18321 — 0.0548547  —0.17416+0.0493597 —0.072997 + 0.11863

Table 3.2: Coefficients in the decomposition of f2(9) and f2(7) for three different values of
me. See Eq. (60).

4 Virtual Corrections to the Matrix Elements of the
Operators O7;, Og, Og and Oqy

4.1 Virtual Corrections to the Matrix Element of Og and O

As the hadronic parts of the operators Oy and O are identical, the QCD corrected matrix
element of Op9 can easily be obtained from the one of Oy. We therefore present only
the calculation for (s¢T¢~]|Oy|b) in some detail. The virtual corrections to this matrix
element consist of the vertex correction shown in Fig. 4.1b) and of the quark self-energy
contributions. The result can be written as

~ as ~ ~
(s 007 |CyOq|bY = CL¥ (—4—) [F9<9><og>tree 4 EO0 tee] (61)

™

with 69 = ?—; 09 and 650) = 4(11_7; (CéO) + Z_Tsr C!gl)>
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4. Virtual Corrections to Oz, Og, Oy and Oqq
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Figure 4.1: Some Feynman diagrams for b — sy* or b — s{™{~ associated with the
operators O, Og and Og. The circle-crosses denote the possible locations where the virtual
photon is emitted, while the crosses mark the possible locations for gluon bremsstrahlung.
See text.

We evaluate diagram 4.1b) keeping the strange quark mass mg as a regulator of collinear
singularities. The unrenormalized contributions of diagram 4.1b) to the form factors FQ(Y)
and Fég) read

1 1 . 1
F(9)4 _ = 2 a2 ~ a2 ~ a3 |
o [4b] ~— 3t e 3(s—|—23 +t38 +2n(r))
8 2 16 20 16 116
+§1n(7‘)—§ln2(r)+§ gé ?§2 2—7§3,
2 1 1
FO1n = —§§<1+§§+5§2>, (62)

where we kept all terms up to 8*. eg and r = (m?/m?) regularize the infrared and collinear
singularities in Eq. (62).

The b and s quark self-energy contributions are obtained by multiplying the tree level
matrix element of Og by the quark field renormalization factor 6 Z, = \/Zy(my) Zy(ms) —1,
where the explicit form for Z,(m) (in the on-shell scheme) is given in Eq. (54).

Adding the self-energy contributions and the vertex correction, we get the ultraviolet finite
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results
Fég):1—;+?§+?§2+12—176§3+f1nf, (63)
] ]
s = 22 g (1 +i4 % 24 %53) + ”;—Rg In(r) + ;ln(r) - §1n2(r), (64)
F9(7):—§§(1+%§+%§2). (65)

At this place, it is convenient to incorporate diagram 3.1f) together with its counterterms
discussed in Section 3.2.

It is easy to see that the two loops in diagram 3.1f) factorize into two one-loop contri-
butions. The charm loop has the Lorentz structure of Og and can therefore be absorbed
into a modified Wilson coefficient: The renormalized diagram 3.1f) is properly included by

modifying 5550) in Eq. (61) as follows:
~ ~ oame ~ 4
C§) — OV = &0 + <C§°> +3 (J{O)) Hy, (66)

where the charm-loop function Hy reads (in expanded form)

1

. N A\ 3
i s s s
Hy=——1[-12 2520 In|{ — 1 — 432 | — 2 —
5335 [ 60 + 2520 n(mc> + 1008 <42) +43 (42) + 256 (42) (67)

0

In the context of virtual corrections also the O(e) part of this loop function is needed. We
neglect it here since it will drop out in combination with gluon bremsstrahlung. Note that
Hy = h(z,8) +8/9 In(/my), with h defined in [41].

4.2 Virtual Corrections to the Matrix Element of O,

We now turn to the virtual corrections to the matrix element of the operator Oy, consisting
of the vertex- [see Fig. 4.1a)] and self-energy corrections. The ultraviolet singularities of
the sum of these diagrams are cancelled when adding the counterterm amplitude

C7 [ Z17 Zm, | 2, — 1] (s 47 |O7|b)tree,  where Zzp =1 -— 9 7 (68)

b 43¢
The expressions for Z,,, and Z,, are given in Eqs. (49) and (47), respectively. The renor-
malized result for the contribution proportional to C7 can be written as
as

(s 0+~ |C04|by = CL¥ (‘H) [F7(9)<59>tree 4 EDO0 e (69)
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with Oy = 1= O7 and ééo) = C’§1). The expanded form factors F7(9) and F7(7) read

. 16 11, 1.

F7() = —?(1+§S+582+183), (70)
32 32 128

R = 5 Lot +8§+6§2+—27 8+ fr, (71)

where the infrared and collinear singular part fi, is identical to the one of Fég) in Eq. (64).
Note that the on-shell value for the renormalization factor Z,,, was used in Eq. (68).

Therefore, when using the expression for F7(7’9) in the form given above, the pole mass for
my, has to be used at lowest order.

4.3 Virtual Corrections to the Matrix Element of Og

Finally, we present our results for the corrections to the matrix elements of Og. The
corresponding diagrams are shown in Fig. 4.1¢) and d). Including the counterterm

s 16
Cs 0257 (s 1107 |O|b)uwee,  Where 6757 = ——2 2
471 9€
yields the ultraviolet and infrared finite result
~ as ~ ~
(s 0407 |C4O8|b) = CL0 (‘E) [F§9><09>tree + F8(7><07>tree} , (72)

with Cv’éo) = C’él). The expanded form factors F8(9) and Fsm read

104 32 1184 40 14212 32
F9="—"_2224 (———H) 5+ (——— 2) §2

9 27 27 9 135 3"
193444 560 ,\ ., 16 A
_ o0 . , 73
(945 277T>s+9 (14+5+8+8) (73)

32 8 44 8 4 40 32 316
B S S (G Ay (2 ),

9 27 9 9 3 3 9 9
2
+(2i707r2—?)§3—§@(§+§2+§3). (74)

5 Bremsstrahlung Corrections

First of all, we remark that in the present paper only those bremsstrahlung diagrams
are taken into account which are needed to cancel the infrared and collinear singularities
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appearing in the virtual corrections. All other bremsstrahlung contributions (which are
finite), will be given elsewhere [44].

It is known [24, 28] that the contribution to the inclusive decay width coming from the
interference between the tree-level and the one-loop matrix elements of Og [Fig. 4.1b)] and
from the corresponding bremsstrahlung corrections [Fig. 4.1f)] can be written in the form

dLy _ dDyy'  drge
ds ds ds
dF99 Oem 2 G%‘ mg pole |V;f>;‘/;b|2 ~\2 ~
- ’ 1—8)2(1+23) ‘ s
d3 <47r ) 4873 (19 (1+29)|2|C)" ”9(8) . (1)

where @go) = i—: (Céo) + = Cé”). This procedure corresponds to encapsulating the virtual
and bremsstrahlung corrections in the tree-level calculation by the replacement

(O = (14 2 5(3)) (Ophise:

The function wg($) = w(8), which contains all information on virtual and bremsstrahlung
corrections, can be found in [24, 28] and is given by

. 2, 5+45 .
wo(8) = ——Ll( ) — gln(l —8)In(8) — g™ = mln(l — 3)
25(1+35)(1—29) 5+95—6852

30129 MOt sa 129

(76)

Replacing 5’&0) by ééO’mOd) [see Eq. (66)] in Eq. (75), diagram 3.1f) and the corresponding
bremsstrahlung corrections are automatically included.

For the combination of the interference terms between the tree-level and the one-loop ma-
trix element of O7 [Fig. 4.1a)] and the corresponding bremsstrahlung corrections [Fig. 4.1¢)]
we make the ansatz

7 dTyr  drbems

ds  ds ds '
dF77 o Qem, 2 G%‘ mIE)),pole |V;:V;‘,b|2 A\ 2 A ~(0) 2 As ~
ds (47r> 48 78 (1=874(1+2/5) 2‘07 ) 7] ()

where 5§0) = C’S). This time, the encapsulation of virtual and bremsstrahlung corrections
is provided by the replacement

(O = (14 22 wr(3)) (Or)ise:

In order to simplify the calculation of w7(8), we make the important observation that the
form factors F7 and F ) have the same infrared divergent part fi [cf Egs. (70) and (63)],
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5. Bremsstrahlung Corrections

whereas F7(9) and Fgm are finite. Taking into account that in d dimensions the decay width
dl'(b — s¢1¢7)/ds corresponding to the matrix element

M(b— 5077 = (507 |G 00 + 60 0 + 69 69| (78)

tree

is given by

(1-8)*[1+0(d—14)]

dT(b — X, 0+07) <aem>2 G e [VisVi |

ds 47 48 3
2~ 2 (2
< {[1+ (d—2)3) (‘(J;O)\ + ‘Cﬁ? ) + 41+ (d—2)/d] (JS”’
(79)
+4(d—1)Re (5§0)5§°’*) } ,
one concludes that the combination
-2 ~ 0|2
AV — &7 argy e dry* (80)
1+ (d—-2)8 ds A[l+(d—2)/8] ds
is free of infrared and collinear singularities. Defining analogously
~ 0|2 ~0)]2
14+ (d—-2)5 ds A[1+(d—2)/5] ds
and using the identity
o =2 i | =2
I I
99 N 77 _ AFVlrt + Arbrcm57 (82)

1+ (d—2)8 ds 41+ (d—2)/5] ds

one concludes that also AT™™™ is finite. This is because dlgg/dé and dI'77/d$ are finite due
to the Kinoshita-Lee-Nauenberg theorem and because AI'V'™ is finite as mentioned above.
The calculation of AI'™™™ is straightforward, as the integrand, expanded in e, leads to
unproblematic integrals. Using the explicit results for ATV ATP™mS and wy(8), one can
readily extract wr(8) from Eq. (82):

8 4 2 2 1845
25(2—25— ) 1 16— 115 — 174

30— YT @09 (3

The reasoning for the interference terms between the tree-level matrix element of O7; and
the one-loop matrix element of Oy and vice versa is analogous: We may combine this

95



Part III: Physical Review D 65 (2002) 074004

contribution with the corresponding bremsstrahlung terms coming from the interference of
diagrams 4.1e) and 4.1f) making the ansatz

dl'g _ dI%" N A%
ds ds ds
dF?Q o Qe \ 2 G% mg,pole |‘/1;;‘/1§b|2 A\ 2 ~(0) ~(0)x) s A
2 - (M) b (1—38)2-12 [2Re<07 C! >7w7g(s)}. (84)

The corresponding encapsulation is realized by the replacement

Qg ~
<O7,9>tree - (1 + ?W79(5)> <O7,9>tree-

This time, we make use of the fact that the quantities

-1

A7 . [~<o> ~<o>*} e
Arvil_rt — )09 ‘ drg9t _ Re 07 Cg dl—‘79t (85)
mixed 1 4 (d—2)5 ds 4(d —1) d3
and
’5(0) h b Re [5(0)5(0)*]_1 b
Arbrpms — ) nggr)ems o 7 9 d]_"ﬂl;ems (86)
mixed T4 (d—2)8 ds 4(d —1) d3
are finite. For the function wzg(s) we obtain
4 4 2 2 12475
wro(8) = —3 In <mﬂb) - §Li(§) - §7r2 —3 In($)In(1 —3) — 5 +§ i In(1 —3)
25(3—24) 15-98
—————In(§) + — : 87

Note that the procedure described here does work only if one of the functions w7($), we(S)
or wrg($) is known already.

Finally, we remark that the combined virtual and bremsstrahlung corrections to the oper-
ator Oy (which has the same hadronic structure as Oy) is described by the function wy($),
too:

FIATRTRN v\ PRRLN )
ds ds ds ’
dFlO,lO o Qe 2 G%’ mg,pole |‘/;:V;€b|2 A2 A ~(0) 2 P A
& = () 48703 (1=37 (1 +28) 12[C0) Trean(d)] - (89)

where 558) = Cf(l)).
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6 Corrections to the Decay Width for B — X £14~

In this section we combine the virtual corrections calculated in Sections 3, 4 and the
bremsstrahlung contributions discussed in Section 5 and study their influence on the decay
width d'(b — X, ¢7¢7)/ds. In the literature (see eg [41]), this decay width is usually
written as

dF(b — Xs EJFE*) . (aem)Q G%‘ mg’,pole H/;;‘/tb|2 (1 o A)2
ds Ar 48 73 i

~ 2 ~ 2
x {(1+2§) (\cgﬂ” + |Gt )+4(1+2/§)

where the contributions calculated so far have been absorbed into the effective Wilson
coefficients O C¢T and C¢IT. It turns out that also the new contributions calculated in
the present paper can be absorbed into these coefficients. Following as closely as possible
the ‘parameterization’ given recently by Bobeth et al. [41], we write

~eff
&

* L 12Re (6$ffé;ﬁ*)} . (89)

Ceft = (1 i # wg(g)) (Ag + Ty h(z,8) + Ug h(1, 5) + Wy h(0, 3))

S (GO R 4 AP - AV D). (90)
™

(7?& _ (1+ as(#)w7(§)> Ar — a;(:) (OfO)Flm Jr02(0)F2(7) +A§O)F§7)>,

-~ Qg N
Cfg = (1—1— meg(s)) A,

where the expressions for h(z, §) and wy($) [see Egs. (67) and (76)] were already available
in the literature [24, 28, 41]. The quantities wr($) and Fl(;’%), on the other hand, have been
calculated in the present paper. We take the numerical values for A7, Ag, Aqg, Ty, Uy, and
Wy from [41], while C\”, ¢{” and Aéo) = ééo’eﬁ) can be found in [48]. For completeness we

list them in Table 6.1.
In Fig. 6.1 we illustrate the renormalization scale dependence of Re [5$H(§)] The dashed

curves are obtained by neglecting the corrections calculated in this paper, ie wr(3$), Flm,

F2(7) and F8(7) are put equal to zero in Eq. (90). The three curves correspond to the
values p = 2.5 GeV (lower curve), u = 5 GeV (middle curve) and p = 10 GeV (upper
curve) of the renormalization scale. The solid curves are obtained by taking into account
the new corrections. In this case, the lowest, middle and uppermost curve correspond to
=10 GeV, 5 GeV and 2.5 GeV, respectively. We conclude that the new corrections

significantly reduce the renormalization scale dependence of Re [5$H(§)]

Fig. 6.2 shows the renormalization scale dependence of Re [ésﬁ(é)} Again, the dashed
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w=2.5 GeV nw=1>5GeV ©w =10 GeV
s 0.267 0.215 0.180
c© —0.697 —0.487 —0.326
¥ 1.046 1.024 1.011
(AP 40) (—0.360, 0.031) (—0.321, 0.019) (—0.287, 0.008)
AQ) —0.164 —0.148 —0.134
(AL Al) (4.241, —0.170) (4.129, 0.013) (4.131, 0.155)
(739, 7iV) (0.115, 0.278) (0.374, 0.251) (0.576, 0.231)
(U, u) (0.045, 0.023) (0.032, 0.016) (0.022, 0.011)
(W9, wib) (0.044, 0.016) (0.032, 0.012) (0.022, 0.009)
(A9 Al) (—4.372, 0.135) (—4.372, 0.135) (—4.372, 0.135)

Table 6.1:  Coefficients appearing in Eq. (90) for p = 2.5 GeV, u = 5 GeV and p =
10 GeV. For ay(u) (in the MS scheme) we used the two-loop expression with 5 flavors
and az(mz) = 0.119. The entries correspond to the pole top quark mass m; = 174 GeV.
The superscript (0) refers to lowest order quantities while the superscript (1) denotes the
correction terms of order o.

curves are obtained by neglecting the new corrections in Eq. (90), ie Fl(g), FQ(Q) and Fg(g)
are put to zero. We stress that we($) is retained, as this function has been known before.
The three curves correspond to the values p = 2.5 GeV (lower curve), =5 GeV (middle
curve) and g = 10 GeV (upper curve) of the renormalization scale. The solid curves take
the new corrections into account. Now, the lowest, middle and uppermost curve correspond
to u = 2.5 GeV, 5 GeV and 10 GeV, respectively. We conclude that the new corrections

significantly reduce the renormalization scale dependence of Re [5§H(§)} , too.

When calculating the decay width (89), we retain only terms linear in a4 (and thus
in wy, wy) in the expressions for |C<T)2, |Ce®|2 and |Cf|2. In the interference term
Re [6$ﬁ5§ff*] too, we keep only linear contributions in «,. By construction, one has to
make the replacements wg — w9 and w; — wrg in this term.

Our results include all the relevant virtual corrections and those bremsstrahlung diagrams
which generate infrared and collinear singularities. There exist additional bremsstrahlung

terms coming, for example, from one-loop O; and O, diagrams in which both the virtual
photon and the gluon are emitted from the charm quark line. These contributions do not
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Figure 6.1: The three solid curves illustrate the p dependence of Re [5$H(§)] when the

new corrections are included. The dashed curves are obtained when switching off these
corrections. We set m,. = 0.29. See text.

induce additional renormalization scale dependence as they are ultraviolet finite. Using
our experience from b — sy and b — sg, these contributions are not expected to be large,
but to give a definitive answer concerning their size they have to be calculated [44].

7 Numerical Results for R ak(35)

The decay width in Eq. (89) has a large uncertainty due to the factor mi’vpole. Following
common practice, we consider the ratio

1 dl'(b — X 0107)
b— X.er,) ds

unark(‘é) = F( (91)

in which the factor mj . drops out. The explicit expression for the semileptonic decay
width I'(b — X.eD.) reads

G%m; m?2 m?
N ,pole 2 cpole | c
P = Xeere) = —gpms Val -9 bpole K(mi)’ 2
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Figure 6.2: The three solid curves illustrate the p dependence of Re [5’55(3)] when the

new corrections are included. The dashed curves are obtained when switching off these
corrections. We set m,. = 0.29. See text.

where g(z) =1 —82 +82% — 2 — 1222 In(z) is the phase space factor, and
. 2a5(mb) f(Z)
3m g(2)

incorporates the next-to-leading QCD correction to the semileptonic decay [49]. The func-
tion f(z) has been given analytically in Ref. [50]:

25 2 2 4 1
flz)=—(1-2% (15_$z+z5z2) + 2 In(2) (20+9Oz_522+§72,3>

1 4 1
+ 2% In®(2) (36 +2%) + (1 — 2% (?7 — %z + ?722) In(1 — z)

—4 (14302°+2*) In(2) In(1 — 2) — (1 4+ 16 2° + 2*) (6 Li(z) — 7°)

—322%%(1 4 2) {WQ —4Li(v/2) + 4Li(—v2) — 2In(2) In G :L é)} . (94)

We now turn to the numerical results for Ry () for 0.05 < § < 0.25. In Fig. 7.1 we
investigate the dependence of Ry ($) on the renormalization scale p. The solid lines

K(z)=1 (93)
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1-5|||||||||||||||||

unark(§) [1044]

Figure 7.1: The three solid lines show the ; dependence of Rguark(8) when including the
corrections to the matrix elements calculated in this paper. The dashed lines are obtained
when switching off these corrections. We set m. = 0.29. See text.

are obtained by including the new NNLL contributions, as explained in Section 6. The
three solid curves correspond to p = 2.5 GeV (lowest line), p = 5 GeV (middle line)
and g = 10 GeV (uppermost line). The three dashed curves (again p = 2.5 GeV for the
lowest, ;1 = 5 GeV for the middle and p = 10 GeV for the uppermost line), on the other
hand, show the results without the new NNLL corrections, ie they include the NLL results
combined with the NNLL corrections to the matching conditions as obtained by Bobeth
et al. [41]. From this figure we conclude that the renormalization scale dependence gets
reduced by more than a factor of 2. Only for low values of § (§ ~ 0.05), where the NLL
1t dependence is small already, the reduction factor is smaller. For the integrated quantity

we obtain
0.25

unark - / ds unark(é) = (125 + 008(:“)) X 10_57 (95>
0.05

where the error is obtained by varying i between 2.5 GeV and 10 GeV. Before our correc-
tions, the result was Ryuark = (1.36+0.18) x 107° [41]. In other words, the renormalization
scale dependence got reduced from ~ +13% to ~ £6.5%.
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Figure 7.2: a) Rquark(8) for m. = 0.27 (dashed line), m. = 0.29 (solid line) and m,. = 0.31
(dash-dotted line) and g = 5 GeV. b) Rquak($) for m,. = 0.25 (dashed line), m, = 0.29
(solid line) and m,. = 0.33 (dash-dotted line) and p =5 GeV. See text.

Among the errors on Rguak(8) which are due to the uncertainties in the input parameters,
the one induced by m. = m./m; is known to be the largest. We repeat at this point that m,.
enters (unlike in B — X v) already the one-loop diagrams associated with O; and Oy. We
did the renormalization of the charm quark mass in such a way that m. has the meaning
of the pole mass in the one-loop expressions. The meaning of m, in the corresponding
two-loop matrix elements, on the other hand, is not fixed (for a discussion of this issue
for B — X, see Ref. [14]). As the running charm mass at a scale of O(my,) is smaller
than the pole mass, it numerically makes a difference whether one inserts a pole mass- or a
running mass value for m, in the two-loop contributions. In a thorough phenomenological
analysis this issue should certainly be included when estimating the theoretical error. We
decide, however, to postpone the quantitative discussion of this point and will take it up
when also the finite bremsstrahlung contributions, which complete the NNLL calculation
of Rquark(§), are available [44]. For the time being, we interpret m. to be the pole mass
in the two-loop contributions. In Fig. 7.2a) we vary 7. between 0.27 and 0.31, while
in Fig. 7.2b) the more conservative range 0.25 < m,. < 0.33 is considered. Comparing
Fig. 7.1 with Figs. 7.2a) and b), we find that at the NNLL level the uncertainty due to m,
is larger than the leftover u dependence, even for the less conservative range of m.. For
the integrated quantity Rquak we have an uncertainty of £7.6% when 1, is varied between
0.27 and 0.31. Varying m,. in the more conservative range, the corresponding uncertainty
amounts to +£15%.

A more detailed numerical analysis for Rquak($) and Rguark, including the errors which are
due to uncertainties in other input parameters as well as non-perturbative effects, will be
given together with the complete bremsstrahlung terms in Ref. [44].

To conclude: We have calculated virtual corrections of O(c) to the matrix elements of Oy,
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O3, Oz, Og, Og and O1g9. We also took into account those bremsstrahlung corrections which
cancel the infrared and collinear singularities in the virtual corrections. The renormaliza-
tion scale dependence of Rqyark(S) gets reduced by more than a factor of 2. The calculation
of the remaining bremsstrahlung contributions (which are expected to be rather small) and
a more detailed numerical analysis are in progress [44].
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A One-loop Matrix Elements of the Four-Quark
Operators

In order to fix the counterterms F(7?) ©

iaquark (0= 1,2) in Eq. (45), we need the one-loop
matrix elements (s ¢T¢~|0;]b)1.100p Of the four-quark operators Oy, Os, O4, Oq; and Oss.
Due to the 1/e factor in Eq. (45), they are needed up to O (¢'). The explicit results (in

expanded form) read

C

44 5 5Y° Y
{&+ﬁ[ 315+252(4 )+1O8<4—> +64<E)] (96)

— 11 -1 12 ree »
+2835[057T 008(4 >+ 8< ) } o0

4
= g <8 €+€7|02‘b> 1-loop » (97)

2e
- u
<S €+€ |Og|b>1_100p = (E) X

<S £+£7 ‘Ol |b> 1-loop

2e
_ p 4 3
<S €+€ |O4|b>1_100p = — (—) { |:9 + % (703 + 73 + s ):| <O7>tree

my

16 2
— 4+ — (=420 4+ 1260497 — 1260 Ly + 252§ + 275> + 4 &
276+8505( 04 1260 4w — 1260 L, + 252§ + 2758° + 4 5°)
4e
+ﬁ(420m+910 6304 Ly m — 420 L, — 3157
+ 31512 — 1265 + 5°) (69>tree}, (98)
_ 64
(s 7071011 |b)1100p = — 2—7><
2¢ A~ N 2 N 3
14 de | s 3 ([ s 16 [ s ~
- 1 = - - - s - O ree » 99
(mc) {+5 4z+7<4z) o3 \1z (Os)iree (99)
+p— 3 +p—
<8£ E ’012|b>1_100p21<86 f |011|b>1_100p. (100)
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B Full $§ and z Dependence of the Form Factors F( -9)

In this appendix we give the dependence of f.” (a=1,2; b=17,9) [see Eq. (59)] on § and
z. We decompose them as follows:

Z f@amm 8L Lm+z,0m] 8" L7

i,5,l,m

The quantities pgsz collect the half-integer powers of z = m?/m? = m?2. This way, the

summation indices in the above equation run over integers only. On the following pages,

we list the numerical values of /{é 2 it and pg ;; for

1=20,...,3;, 7=0,1;, [=-3,...,3 and m=0,....4.

Coefficients not explicitly mentioned below vanish.

(9)

Coefficients and p(l?i)j for the decomposition of fl(g)

1,i5lm
9 A~ 9 ~
P00 = 3.8991 7’ plo = —23.3946 1,
) — _140.368 17 () = 7.79821 ;" — 319.726 17
P120 = D08 Me P130 = 2D Me
0 0 0 0
0 0 0 0
(9) 0 0 0 0
K1 oomm = | —4.61812 + 3.671667 5.62963 + 1.86168 i 0 0 0
’ 14.4621 — 16.21554  9.59321 — 11.17014 —1.18519 — 7.446741 —0.790123 0
—16.0864+26.7517¢ 54.2439 — 14.8935i —15.4074 —29.7877 —3.95062 0
—14.73 — 23.6892 —28.5761 + 34.7514 4 20.1481 0 0
0 0 00
0 0 00
(9) 0 0 00
Hl,Ollm = —0. 0493827 0.103427 % 0 0 00
—0.592593 0 0 00
4.95977 — 1.86168 ¢ —1.18519 — 7.446747 —2.37037 0 O
—9.20287 — 1.65483 % —1.0535+9.928987 3.16049 0 O
0 0 0 0
0 0 0 0
(9) —2. 48507 0.186168 ¢ 0 0 0 0
lil 10im = 4.47441 — 0.3102817 1.48148 — 1.86168 72 0 0 0
’ 71.3855 —30.7987¢ 8.47677 — 33.51037 12.5389 — 7.446747 —0.790123 0.790123
—18.1301 4+ 66.14397¢ 149.596 — 67.02067 —49.1852 — 81.91417 —11.0617 0
—72.89 —63.7828 ¢ —68.135+134.0411 63.6049 0 0
0 0 0 00
0 0 0 00
R A
1,11lm =
—2.66667 — 1.86168 7 —1.18519 0 00
18.6539 — 7.446741 —4.74074 — 29.787¢ —9.48148 0 O
—41.6104 — 3.723371 —2.37037 +44.680441 14.2222 0 0
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0 0 0 0 0
—0.403158 — 0.0199466 4 0 0 0 0
) —0.0613169 +0.0620562 i 0 0 0 0
K1 90im = 37.1282—1.365247  22.0621 — 1.86168 5.33333 0.790123 0
212.74 - 5220810 —21.9215— 521272 57.1724 — 7.446747 —2.37037 2.37037
—44.6829+ 108.7137  272.015— 163.8284 —119.111 — 156.3827 —21.3333 0
—137.203 - 106.8320  —99.437 +330.139 ¢ 168.889 0 0
0 0 0 00
0 0 0 00
() 0 0 0 00
K1 91im = 0.0164609 0 0 00
—5.33333 — 3.72337 ~2.37037 0 00
40.786 — 2234021 —14.2222 — 67.02067 —21.3333 0 0
—111.356 119.148 37.9259 0 0
—0.0759415 — 0.00295505 i 0 0 0 0
—0.00480894 + 0.00369382 i 0 0 0 0
©) —1.81002 + 0.0871741 i ~0.919459 ~0.197531 0 0
K1 30im = 79.7475—1.72206%  57.3171 — 1.861681 11.2593 2.37037 0
425579 — 76.64793  —68.8016 —69.50297 129.357 — 7.446747 —5.53086 4.74074
~87.8046+ 148.4817  417.612 — 3115227 —227.16 — 253.1897 —34.7654 0
—279.268 - 135.1180  —146.853 +652.831 331.250 0 0
0 0 0 00
0 0 0 00
©) 0 0 0 00
K] 31im = 0.0219479 0 0 00
—8.2063 — 5.58505 i —~3.55556 0 00
70.2698 — 49.6449 i —31.6049 — 119.1481 —37.9259 0 0
—231.893+ 18.61687 11.8519+ 248.225i 79.0123 0 0
Coefficients m&? 1 and pg:)] for the decomposition of flm
P\ = 1.94955 1’ p\lo = 11.6973 172,
(o = 70.1839 7 (o = —3.8991 70,1 + 159.863 77
P120 = (V- Me P130 = 79 m - + 159.863m,
0 0 0 0 0
0 0 0 0 0
) 0 0 0 0 0
K1 gotm = | —1.14266—0.5171351 0 0 0 0
—2.20356+ 1.59186 0 —5.21743 + 1.861681 0.592593+ 3.723374 0.395062 0
1.86366 — 3.06235 i —4.66347 3723376 0.395062 0
—1.21131+42.80505¢  2.99588 — 2.48225 i —4.14815 0 0
(m
K1,01tm = 0
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0 0 0 0 0
0 0 0 0 0
X 0 0 0 0 0
K1 lotm = | —2:07503+ 1.396261 —0.444444 + 0930842 0 0 0
—25.9259 4 5.780657 —3.40101+ 13.03184 —4.4917 4 3.723374 0.395062 —0.395062
11.4229 — 15.2375¢ —34.0806+ 11.17014  10.3704 + 18.61684 2.37037 0
11.7509+ 15.69847  18.9564 — 24.8225 i ~14.6173 0 0
0 0 0 00
0 0 0 00
™ 0 0 0 00
K1 11im = —0.0164609 0 0 00
1.03704 + 0.930842 i 0.592593 0 00
—4.66347 7.44674 2.37037 0 0
6.73754+ 1.86168¢ 1.18519 — 7.446747 —2.37037 0 0
0 0 0 0 0
0 0 0 0 0
™ 0.00555556 0 0 0 0
K1 90tm = | —19-4691+1.590197 —11.6779 +0.930842 —2.96296  —0.395062 0
—90.4953 4 14.77884  14.9320+22.3402i —24.438+3.723374 1.18519 —1.18519
23.8816 — 32.8021 7 —82.7915+39.09547 32.2963 + 44.68047  5.92593 0
38.1415+34.86831  38.6436 — 80.673 —41.5802 0 0
0 0 0 00
0 0 0 00
™ 0 0 0 00
K1 21im = —0.0164609 0 0 00
2.37037 + 1.86168 1.18519 0 00
—13.9904 + 3.723374 2.37037 +22.3402¢ 7.11111 0 0
27.5428 4 3.723374 2.37037 — 29.7877 —9.48148 0 0
0 0 0 0 0
—0.00010778 + 0.00258567 i 0 0 0 0
XS 0.946811 — 0.0258567 i 0.488889 0.0987654 0 0
K1 30im = —41.9952+1.636737  —30.2091 +0.930842 i 622222  —1.18519 0
—189.354+25.8196 i 42.6566 +31.02814 —57.765+3.72337i 2.76543 —2.37037
451784 — 5242077  —145.181+88.74037 70.9136+81.91414 11.0617 0
77.3602 + 54.2499 i 58.4491 — 184.927 i —96.0988 0 0
0 0 0 00
0 0 0 00
™ 0 0 0 00
K1 31m = —0.0164609 0 0 00
3.85185 +2.79253 177778 0 00
—27.3882 4 13.03184 8.2963+44.68047 14.2222 0 0
69.4495 + 1.86168 1.18519 — 74.46747 —23.7037 0 0
Coefficients "), and p(g)- for the decomposition of f. )
2,i5lm 2,1j 2
S0 = —23.3946 12 pSly = 140.368 172,
P = 842.206 1, pSho = —46.7892 7,1 + 1918.36 171,
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9)
K2.00im

(9)
K9.01im

9)
K2 10tm

9)
Ko 11im

(9)
Ko 201m

(9)
Ko 21tm =

9)
Ko 301m =

108

=
&
|
|
|
|

0
0
0

0
0
0

—24.2913 —22.02997 —23.1111 — 11.1701 ¢
—86.7723 +97.29317 —57.5593 + 67.0206¢ 7.11111
96.5187 — 160.51¢ —325.463 4-89.36097 92.4444
88.3801 +142.135¢ 171.457 — 208.509¢

0.296296 + 0.620562 17
3.55556

—29.7586 +11.1701% 7.11111444.6804¢ 14.2222
55.2172+9.928987 6.32099 — 59.5739¢ —18.963

0.8462 + 1.11701¢

0
0
0
0
0
0

0
0

[l e Re i en]

0

—26.8464 + 1.86168 7 —8.88889 4 11.1701+¢
—428.313 4+ 184.792¢ —50.8606 + 201.0627 —75.2337 4-44.6804 ¢ 4.74074 —4.74074

108.781 — 396.864 ¢ —897.575 4 402.124 %
408.81 — 804.248 ¢

437.34+ 382.6971

o oo

0
16.4+11.1701%

0
—0.0132191 +0.11968 ¢
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o oo

0

7.11111
—111.923 +44.6804 ¢ 28.4444 + 178.722 4
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0 00
0 00
0 00
0 00
0 00
56.8889 0 0
0
0
0
0
—-32.0

—222.769 +8.19141¢ —132.372411.1701%

—1276.44 + 313.249¢

131.529 4 312.763 7 —343.034 + 44.6804 ¢

268.098 — 652.2797 —1632.09 4 982.969 %
596.622 — 1980.83 ¢

823.218 + 640.989 4

0 0
0 0
0 0
—0.0987654 0
32.0 +22.3402 14.2222
—244.716 4 134.041 4 85.3333 + 402.124
668.137 —714.8871
—0.0142243 4 0.0177303 i 0
0.0288536 — 0.0221629 0
10.8601 — 0.523045 i 5.51675

—478.485 +10.3323 ¢
—2553.47 4 459.887 4
527.368 — 890.889 ¢
1675.61 4 810.709 ¢

[l e R el )

0
128

—227.556

—343.902 +11.1701 ¢

—2505.67 + 1869.13 ¢
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0
0
0
0
0
0
0

—67.5556
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7,9
F5”

0 0 0 00

0 0 0 00

(9) 0 0 0 00
H2,31lm = —0.131687 _ 0 0 00
49.7778 4 33.5103 % 21.3333 0 00

—421.619 +297.871 189.63 + 714.8871 227.556 0 0O
1391.36 — 111.701% —71.1111 — 1489.35% —474.074 0 0O

(7)

Coeflicients £y ;.,,

7 ~ 7 ~
P = —11.6973 2 pS, = — 70.1839 1i,
() = —421.1037 (N =23.3946 . " — 959.179 7
P2.20 = . me P2,30 —49- me . M
0 0 0 0 0
0 0 0 0 0
(7) 0 0 0 0 0
Ko oo = | 6-85597+3.102814 0 0 0 0
’ 13.2214 — 9.55118¢ 31.3046 — 11.1701 ¢ —3.55556 — 22.3402+¢ —2.37037 0
—11.182+418.3741¢ 27.9808 —22.34021 —2.37037 0
7.26787 —17.375741 —17.9753 4+ 14.8935 ¢ 24.8889 0 0
M _
Ko 01im = 0
0 0 0 0 0
0 0 0 0 0
(7) 0 0 0 0 0
/432 10lm — 12.4502 — 8.37758 ¢ 2.66667 — 5.585051 0 0 0
’ 155.555 — 34.683947 20.4061 — 78.19084% 26.9502 — 22.3402¢ —2.37037 2.37037
—68.5374 +91.42517 204.484 — 67.02067 —62.2222 — 111.7017 —14.2222 0
—70.5057 —94.1903 47 —113.738 + 148.93514 87.7037 0 0
0 0 0 00
0 0 0 00
(7) 0 0 0 00
"Q2,lllm = 0.0987654 ' 0 0 00
—6.22222 — 5.58505 ¢ —3.55556 0 00
27.9808 —44.6804 1 —14.2222 0 0
—40.4253 — 11.17017 —7.11111 +44.6804+ 14.2222 0 0
0 0 0 0 0
0 0 0 0 0
(7) —0.0333333 0 0 0 0
/12 20im — 116.815—9.541134 70.0677 — 5.58505 % 17.7778 2.37037 0

542.972 — 88.6728 1 —89.5971 — 134.041¢ 146.628 —22.3402¢ —7.11111 7.11111

and pgzj for the decomposition of f2(7)

—143.294196.8137 496.749 — 234.5724 —193.778 — 268.083 1 —35.5556 0

—228.849 — 209.217 —231.862 + 484.038+¢ 249.481

0 0
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0 0 0 00
0 0 0 00
X 0 0 0 00
Ko91im = 0.0987654 0 0 00
—14.2222 — 11.17014 —7.11111 0 00
83.9424 — 22,3402 —14.2222 — 134.0414 —42.6667 0 0
—165.257 — 22.34024 —14.2222+ 178.7227 56.8889 0 0
0 0 0 0 0
0.000646678 — 0.015514 0 0 0 0
% —5.68087 +0.15514 4 —2.93333 —0.592593 0 0
Ko 300m = 251.971 — 9.820394  181.255 — 5.58505 4 37.3333 711111 0

1136.13 —154.918¢ —255.94 — 186.168¢  346.59 —22.3402¢ —16.5926 14.2222
—271.07+314.5244  871.089 — 532.4421 —425.481 —491.485¢ —66.3704 0

—464.161 — 325.4997 —350.695 + 1109.56 i 576.593 0 0
0 0 0 00
0 0 0 00
) 0 0 0 00
Ko 31im = 0.0987654 0 0 00
—23.1111 — 16.75521 —10.6667 0 00
164.329 — 78.1908 i —49.7778 — 268.0837 —85.3333 0 0
—416.697 — 11.17017 —7.11111 +446.8047 142.222 0 0
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1 Introduction

After the observation of the penguin-induced decay B — X,v [1] and corresponding exclu-
sive channels such as B — K*v [2], rare B decays have begun to play an important role in
the phenomenology of particle physics. They put strong constraints on various extensions
of the Standard Model. The inclusive decay B — X, ¢T¢~ has not been observed so far,
but is expected to be detected at the currently running B factories.

The next-to-leading logarithmic (NLL) result for B — X, ¢*¢~ suffers from a relatively
large (£16%) dependence on the matching scale uy [3, 4]. The NNLL corrections to
the Wilson coefficients remove the matching scale dependence to a large extent [5], but
leave a +£13%-dependence on the renormalization scale jup,, which is of O(my). In order to
further improve the result, we have recently calculated the O(«y) two-loop corrections to
the matrix elements of the operators O; and Oy as well as the O(a;) one-loop corrections
to Or,..., Oy [6]. Because of large resonant contributions from cc intermediate states, we
restrict the invariant lepton mass squared s to the region 0.05 < § < 0.25, where § = s/m.
In the following we present a summary of the results of these calculations.

2 Theoretical Framework

The appropriate tool for studies on weak B mesons decays is the effective Hamiltonian
technique. The effective Hamiltonian is derived from the Standard Model by integrating
out the ¢ quark, the Z, and the W boson. For the decay channels b — s¢*¢~ ({ = pu,e) it
reads

e 10
Foyrw
Heg = R Vis th;a‘ 0,

where O; are dimension six operators and C; denote the corresponding Wilson coefficients.
The operators can be chosen as [5]

O1 = (styTcL)(cLy"Tbr), Oy = (Styucr)(crybe),

Os = (5079br) 24(@"9), Oy = (Sp7,T°br) Y (7" T q),

Os = (Styumobe) 22,(@v" 7" 7q),  Os = (StyumeTbr) 22, (@v"* T q),
0O, = émb(ELa“”bR)FW, Oy = imb(ELa“”T“bR)GZV,

Oy = S(5p7.br) X ,(04"0), On = S(se7br) Yol s0).

The subscripts L and R refer to left- and right-handed fermion fields. We work in the
approximation where the combination (V*.V.,) of Cabibbo-Kobayashi-Maskawa (CKM)

us
matrix elements is neglected. The CKM structure factorizes therefore.
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3 Virtual Corrections to the Operators Oy, O2, O~,
08, Og and 010

Using the naive dimensional regularization scheme in d = 4—2 € dimensions, ultraviolet and
infrared singularities both show up as 1/e" poles (n = 1,2). The ultraviolet singularities
cancel after including the counterterms. Collinear singularities are regularized by retaining
a finite strange quark mass m,. They are cancelled together with the infrared singularities
at the level of the decay width, when taking the bremsstrahlung process b — s{™f™g
into account. Gauge invariance implies that the QCD-corrected matrix elements of the
operators O; can be written as

<S €+€7 ‘OZ’b> = ﬁ;(g) <09>tree + Fz(7) <O7>tree 9

where (Og)iree and (O7)iee are the tree-level matrix elements of Og and Oy, respectively.

3.1 Virtual Corrections to O; and O,

For the calculation of the two-loop diagrams associated with O; and O, we mainly used
a combination of Mellin-Barnes technique [6, 7] and of Taylor series expansion in s. For
s < mj and s < 4m?, most diagrams allow the latter. The unrenormalized form factors
F(9) of Oy and O, are then obtained in the form
FOO = 37 i & wl(3) (m2) W™(h)
3,5,L,m

where 7, = ™<. The indices i, j, m are non-negative integers and | = —i, —i 4+, —i+1, .....
mp s Js ) 92 ’

Besides the counterterms from quark field, quark mass and coupling constant (gs) renor-
malization, there are counterterms induced by operator mixing. They are of the form

all 2 a2 g2
C'i-Z5Zij(Oj> with 6Zij:%|:a01—|— Z} L% {aoz+ ;g I ZJ:| +0(a?).
j

4 | Y (47)? g €2

A complete list of the coefficients aﬁ’j” used for our calculation can be found in [6]. The

operator mixing involves also the evanescent operators
011 = (EL'VM’YV’VJT(ICL) (EL’}/M’YV’YUTGZJL) — 16 01 and
O12 = (S1vu v Y0cr) (€279 77br) — 16 Os.

3.2 Virtual Corrections to O, Og, Og and Oy

The renormalized contributions from the operators O;, Og and Og can all be written in
the form o
S

=10y — O [ Xs ©) /0 [0NFs
<$€ 14 |0201‘b> C,L < 47‘(’) |:F’7, <09>tree+F; <O7>tree:|7
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with 0; = £2 0;, O = O and O = 42 (¥ + 2= ).

The formally leading term ~ g;QC’éO)(,ub) to the amplitude for b — s¢*¢~ is smaller
than the NLL term ~ g;2[¢2/(16 72)] C8 () [8]. We therefore adapt our systematics to
the numerical situation and treat the sum of these two terms as a NLL contribution, as

indicated by the expression for 6’50). The decay amplitude then starts out with a NLL
term.

The contribution from Oy is finite, whereas those from O; and Oq are not, ie F7(7) and Fg(g)
suffer from the same infrared divergent part fi..

As the hadronic parts of the operators Og and Oq are identical, the QCD corrected matrix
element of Oyy can easily be obtained from that of Oy.

4 Bremsstrahlung Corrections

It is known [3, 4] that the contribution to the inclusive decay width from the interference
between the tree-level and the one-loop matrix elements of Oy and from the corresponding
bremsstrahlung corrections can be written as

dr99 Aem 2 G%’ mlE)) pole |‘/;f>;‘/tb|2 2 ~(0) 2 a

- ’ 1—8)2(1+28) |2 ‘(J % ()] -

ds <47r> 48 3 (1=8)7(1+25) ) 70 wo(3)
Analogous formulas hold true for the contributions from O; and the interference terms
between the matrix elements of O; and Oy:

2 5 * 2
dlUzz (Oéem ) 2 Gy pote | Vis Vi

~ 2
i e S (1 5P a(1+2/9) 280 2 un(9)]
s

47 s
dl’ Oem 2 G2 m5 ole |V>;V |2 ~ g ~ ~(0) ~

~

The function wg($) = w($) can be found eg in [3, 4]. For w;(8) and wr9(3) see [6]. All other
bremsstrahlung corrections are finite and will be given in [9].

5 Corrections to the Decay Width for B — X 14~

Combining the virtual corrections discussed in Section 3 with the bremsstrahlung contri-
butions considered in Section 4, we find for the decay width

(1-3)

2] +4(1+2/3)

dr(b— X,0707) <aem>2 G i e [ VsV’
ds 47 48 73

~ ]2 ~ ~
x {(1+2§) chff +|Cin Cif

" 412 Re [ésﬁégﬁ*} } . (1)
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6. Numerical Results

where the effective Wilson coefficients 5‘?3, 5§H and 5fg can be written as

Ot = {1 n 0‘375”) wg(é)] (Ag + Ty h(1i2, 8) + Uy h(1, ) +W9h(0,§)>

Oés(M> 0) (9 0) (9 0) (9
~ B (AR + OB + AR,

Oeft = {1 + 0‘575“ ) w(é)] Ar — —ai(: ) (C@Ff” + OV ED + Ago)F§7)> ,

T

Ot — {1+“5(“) wg(g)} Ao

The function h(7h?, §) is defined in [5], where also the values of A7, Ag, Ao, Ty, Uy and Wy
can be found. C1”, C{” and AL = C{"*™ are taken from [7].

6 Numerical Results

The decay width in Eq. (1) has a large uncertainty due to the factor mj .. Following
common practice, we consider the ratio

1 AT (b — X, 0+07)

Rauani(5) = T — X.e,) P :

in which the factor m; drops out. I'(b — X.e?,) can be found eg in |5].
b,pole

In Fig. 6.1(a) we investigate the dependence of Rquark(5) on the renormalization scale j,
for 0.05 < § < 0.25. The solid lines take the new NNLL contributions into account,
whereas the dashed lines include the NLL results combined with the NNLL corrections to
the matching conditions [5], only. The lower, middle and upper line each correspond to
up = 2.5, 5 and 10 GeV, respectively, and m,. = 0.29. From this figure we conclude that
the renormalization scale dependence gets reduced by more than a factor of two. For the
integrated quantity we get

0.25
unark - / d§ unark(:g) - (1.25 :i: 0.08) X 10_57

0.05

where the error is obtained by varying pu;, between 2.5 GeV and 10 GeV. Not including our
corrections, one finds Ryyark = (1.36+0.18) x 1075 [5]. In other words, the renormalization
scale dependence got reduced from ~ +13% to ~ £6.5%. The largest uncertainty due to
the input parameters is induced by .. Fig. 6.1(b) illustrates the dependence of Rqyark($)
on Mm.. The dashed, solid and dash-dotted lines correspond to m. = 0.27, m,. = 0.29 and
m. = 0.31, respectively, and pu, =5 GeV. We find an uncertainty of £7.6% due to m..
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unark(g) [10_4]

1.5

0.05

0.1 0.15 0.2

5

(a) Dependence of Rqyark(8) on pp.

0.25

unark(g) [10_4]

1.5

0.05

T T T T
A/./l

12

0.1 0.15 0.2

5

(b) Dependence of Rgyark(8§) on ..

0.25

We conclude with the remark that the results presented in this exposition have recently

been included in a systematic description of the corresponding exclusive decay
mode B — K*(*¢~ [10, 11].
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ABSTRACT

In a recent paper [1], we presented the calculation of the O(«) virtual
corrections to b — s£T¢~ and of those bremsstrahlung terms which are
needed to cancel the infrared divergences. In the present paper we work
out the remaining O(ay) bremsstrahlung corrections to b — s £*¢~, which
do not suffer from infrared and collinear singularities. These new contri-
butions turn out to be small numerically. In addition, we also investigate
the impact of the definition of m,. on the numerical results.
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1 Introduction

The inclusive rare decay B — X, ¢~ has not been observed so far, but is expected to be
measured at the operating B factories after a few years of data taking. The measurement
of its various kinematical distributions, combined with improved data on B — X+, will
imply tight constraints on the extensions of the Standard Model and perhaps even reveal
some new physics.

The main problem of the theoretical description of B — X T/~ is due to the long-distance
contributions from éc resonant states. When the invariant mass /s of the lepton pair is
close to the mass of a resonance, only model dependent predictions for these long distance
contributions are available today. It is therefore unclear whether the theoretical uncertainty
can be reduced to less than £20% when integrating over these domains [2].

However, when restricting /s to a region below the resonances, the long distance effects
are under control. The corrections to the pure perturbative picture can be analyzed within
the heavy quark effective theory (HQET). In particular, all available studies indicate that
for the region 0.05 < § = s/m? < 0.25 the non-perturbative effects are below 10% [3]-[8].
Consequently, the differential decay rate for B — X, ¢*¢~ can be precisely predicted in
this region using renormalization group improved perturbation theory. It was pointed out
in the literature that the differential decay rate and the forward-backward asymmetry are
particularly sensitive to new physics in this kinematical window [9]-[13].

The next-to-leading logarithmic (NLL) result for B — X, "¢~ suffers from a relatively
large (£16%) dependence on the matching scale py [14, 15]. The NNLL corrections to the
Wilson coefficients remove the matching scale dependence to a large extent [16], but leave
a £13%-dependence on the renormalization scale i, which is of O(my,). In order to further
improve the theoretical prediction, we have recently calculated the O(ay) virtual two-loop
corrections to the matrix elements (s¢T¢~|0;|b) (i = 1,2) as well as the virtual O(ay)
one-loop corrections to Or,...,O19 [1]. As some of these corrections suffer from infrared and
collinear singularities, we have added those bremsstrahlung corrections needed to cancel
these singularities. This improvement reduced the renormalization scale dependence by a
factor of 2.

In the present paper we complete the calculation of the bremsstrahlung corrections associ-
ated with the operators Oy, O, O7,...,O1, ie we add those bremsstrahlung terms which are
purely finite and have therefore been omitted in Ref. [1]. We anticipate that the additional
terms have a small impact on the phenomenology of b — s /(™.

The paper is organized as follows: In Section 2, we briefly specify the theoretical frame-
work, before, in Section 3, we discuss the organization of the calculation of the finite
bremsstrahlung corrections and review the structure of the virtual corrections and singular
bremsstrahlung contributions, calculated in Ref. [1]. The finite bremsstrahlung corrections
are worked out in Section 4 and Section 5. In Section 6, finally, we investigate the numer-
ical impact of the new corrections on the invariant mass spectrum of the lepton pair. We

128



3. Organization of the Calculation and Previous Results

also illustrate the dependence of our results on the definition of the charm quark mass.

2 Effective Hamiltonian

The appropriate tool for studies on weak B mesons decays is the effective Hamiltonian
technique. The effective Hamiltonian is derived from the Standard Model by integrating
out the t quark, the Zy and the W boson. For the decay channels b — s¢T¢~ ({ = u,e) it
reads
4Gy 10
Heg = ——= V..V, C; Oy,

€ \/5 t tb ;
where O; are dimension six operators and C; denote the corresponding Wilson coefficients.
The operators we choose as in [16]:

O1 = (spyuTr)(ery"Tr), O2 = (81yucr)(cLy*or),

O3 = (5079b1) 2g(@"9), Oy = (57,7T°%¢) > (" Tq),

Os = (B Yobr) 2o,(@"°q), Os = (5ryu Y. T%L) 3, (@' T),
O; = émb(gLU'ube)Fuu, Oy = imb(ELo“”T“bR)GZV,

Oy = S(s17ubr) 3,(040), O = S(507br) X0y 50).

The subscripts L and R refer to left- and right-handed fermion fields. We work in the
approximation where the combination (V5V,,) of Cabibbo-Kobayashi-Maskawa (CKM)

us ¥ ub
matrix elements is neglected and the CKM structure factorizes.

In the following it is convenient to define the operators 67,...,610 according to

~ aS

05 = 1205, (j=T,.,10, &
with the corresponding coefficients

~ A7 ,

Cj: Oz_CJ, (j :7,,1()) (2)

3 Organization of the Calculation and Previous Re-
sults

In this section we comment on the organization of the calculation of the virtual and brems-
strahlung corrections to the process b — s£*¢~ and repeat the results obtained in Ref. [1].

The one-loop diagrams in Fig. 3.1, associated with the four-quark operators Oq,...,0Og, lead
to contributions which are proportional to the tree level matrix elements of the operators
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b C;0; s b C;0; s

a) b)

Figure 3.1: Diagram a) can be absorbed by replacing the Wilson coefficients Cy and Cy
through 5;“0‘1 and af;wd, respectively. v* denotes an off-shell photon which subsequently
decays into a (¢T¢7) pair. Similarly, diagram b) is absorbed through the replacement
68 — 6§n°d. g denotes an on-shell gluon. The index i runs from 1 to 6. See text for
details.

600
SO

o)
o)
o

a) b) c)
C C
Q Q
d) 9 e) S

Figure 3.2: Diagrams which are automatically taken into account when calculating correc-
tions to C"™V0;, CL™Y0g and C™V0,.

57, 58 and 59. Therefore, they can be absorbed by appropriately modifying the Wilson
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b 0101,0202 S b 0101,0202 S b 0101,0202 S
[ X C{ X o o C§ —X) o o X
S S
S S
c X c @ 0600000¢
99 99 c
a)
b 0101,0202 S
S
% ‘
,
b)

Figure 3.3: The two-loop virtual diagrams induced by O; and O, that cannot be absorbed
into the O7 g9 contributions by weighing them with the modified Wilson coefficients. The
circle-crosses denote the possible locations where the virtual photon is emitted. The curly
lines represent gluons.

b 0101, CQOQ S b 0101, CQOQ S

Figure 3.4: The only two bremsstrahlung diagrams induced by O; and O, that cannot
be absorbed into the O;gg9 contributions by weighing them with the modified Wilson
coefficients.

coefficients 67, 58 and 59. The modified coefficients we write as

6?10d :A77 (3)
éénOd :A87
5énod =Ag+ Ty h(z,8) + Uy h(1,8) + Wy h(0,8).

The auxiliary quantities A;, Ty, Uy and Wy are linear combinations of the Wilson coefficients
Ci(p). Their explicit form is relegated to the appendix. The one-loop function h(z, §) is
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GO0 0@ GGG 0@ GGG Wm
S PN FCN
b é?’ Cmod 0, %) 5 g Cmod 5, %\ @ Cro010 "’o\
a)
60000 600007
SN SN
b § e s b S 2 s
@—(Q X ) X -4 X %
Cm0d58 aénodas
d) e)

Figure 3.5: One-loop virtual O(a;) corrections induced by C™9Y0,, CL™V0,,

aéo’mOd)ég and 6%8)510. The circle-crosses denote the possible locations for emission of
a virtual photon.

b 5;“0‘167 S b 6310(1697 510610 S b 6;“0’153 S

% N |

a) b) c)

499994 )

Figure 3.6: The O(as) bremsstrahlung diagrams induced by 57, 59, 610 and 58. Weighing
the contributions of 67, Os and Oy with the corresponding modified Wilson coefficients
accounts for the bremsstrahlung diagrams depicted in Fig. 3.2b)—e). The crosses and circle-
crosses denote the possible locations for emission of a bremsstrahlung gluon and a virtual
photon, respectively.

given by [16]
4 8 16 2
hz,8)=—=1 —_ 42z
(2,39) i n(z)+27—|— 93
2arctan |/ 2, §<4dz
2 4 42—35§
SN “
§ §
l(éiﬁ#) i, §>4z

It is obvious that the modification of the Wilson coefficients automatically accounts also
for the diagrams in Fig. 3.2 when calculating the corresponding corrections to the matrix
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elements

(st |CO™DO,b) (i =17,8,9),
where 6’1-(0’m0d) are the leading order terms of the modified Wilson coefficients, ie

5§O,mod) _ A'(70) :

68(0,m0d) _ Aé(])’ (5)
Ciomed — AW L 7O Bz 8) + U n(1,8) + W (0, 5) .

For the explicit expressions of the quantities AEO), TQ(O), Uéo) and Wéo) we refer to the
appendix.

Notice that the virtual and bremsstrahlung corrections of the four-quark operators with
topologies shown in Figs. 3.3 and 3.4, however, have to be calculated explicitly. As the
Wilson coefficients C'; and C5 are much larger than Cs,...,Cls we retain the contributions
of these topologies only for O; and O, insertions.

In the previous work [1], we systematically calculated the virtual corrections to the matrix
elements of CfO)Ol, 050)02, shown in Fig. 3.3, as well as to those of C](.O’mOd)Oj (1=1,..,9)

and 6’1(8)610 (cf Fig. 3.5). Furthermore, we also took into account the corrections to the
Wilson coefficients calculated in Refs. [16, 17].

We found that the matrix elements of the operators Oz, Oy and Oy [cf Fig. 3.5a)—)]
suffer from infrared and collinear singularities. Consequently, on decay width level the
interferences (O;,Ox) (j4,k = 7,9,10) are singular, too. We therefore included the gluon
bremsstrahlung corrections associated with (6j,5k) (j,k = 7,9,10) in order to get an
infrared finite result for the decay width [cf Fig. 3.6a) and b)].

Taking into account the virtual and bremsstrahlung contributions discussed so far, we
obtain the result presented in Ref. [1]:

dr(b — XS €+€_) o (Oéem)Q G% mg,pole “/:‘;‘/tb|2 (1 - §)2
ds A7 48 3
_ 2

><{(1+2§) <‘cgff >+4(1+2/§)

2 ~ ~
+|ca Ce

" 412 Re (5‘;@;‘**)} . (6)

where the effective Wilson coefficients 5?3, 5§H and 5§§ are given by [1]
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ceft = (1 + # w7<§)) A;

-2 (e ) + O () + AVED ), )

Cieft — (1 N v (ft) wg(é)) (Ag + Ty h(2, 8) + Ug h(1, 5) + Wy (0, 3))

™
-2 (P ROG) + O )+ AVEY), ®)
Cofl = (1 + # wg<§)) Ayg. (9)

The quantities C’fo), 02(0), Az, Aéo), Ag, Ao, Ty, Uy and Wy are Wilson coefficients or
linear combinations thereof. We give their analytical expressions and numerical values
in the appendix. The one-loop function h(m?,5) is given in Eq. (4), while the two-loop
functions Fl(;)’(g), accounting for the diagrams in Fig. 3.3, and the one-loop functions
F8(7)’(9), corresponding to the diagrams 3.5d) and e), are given in Ref. [1]. The functions
w7 and wy, finally, include both virtual and bremsstrahlung corrections associated with 57,
Oy and Oyy. For details on their construction we again refer to [1].

When calculating the decay width (6), we retain only terms linear in a;; (and thus in wy, wy)
in the expressions for |C¢|2, |C¢f|2 and |C<f|2. In the interference term Re|CSECE™ | too,

we keep only linear contributions in a. By construction one has to make the replacements
w9 — wrg and wy; — wrg in this term.

The functions wr, wg and w9 read

9 3
18 1(1 5) 2§(2—2§—§2)1 (5) 1 16—115—1752
- = —8§) — = n(s) — — :
32+§ 3(1—5)°(2+5) 18 (2+38)(1—3)
(10)
. 4. . w2 5445 .
wo(8) = ~3 Li(5) — = In(1 — 8) In(8) — 571'2 T 30129 In(1 — 3)
28049128 o 59568 )
3(1—4)2(1+29) 6(1—3)(1+28)
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4. Finite Bremsstrahlung Contributions of Type A

()——7T —;ln( )In(1 — 3)

&

3
@

|

|
w
=
N
3 |=
v
wl»lk

12 25(3-25 1
gy - 228220 g 4 L2298
9 3 9 (1-38) 18 1-3

(12)

Summary
The bremsstrahlung corrections associated with the interferences

<5§O’m0d)6j, 5}207m0d)5k> ) (], k= 7,9, ]_0)7

are already included in formula (6). The remaining bremsstrahlung corrections, which are
infrared finite, we derive in Section 4 and 5. In Section 4 we discuss the contributions of
the interferences

(C(O mod) By, ¢omod) Ok) (k=7,8,9,10),

which we call to be of type A. There is no contribution from k = 10 because of the Dirac
structures of the involved operators. Section 5 is devoted to the interferences

(cP0,.c%0;), (.j=12) and (C?0,C™V0,), (1=1,2 k=7,8,9,10).

Accordingly, we call these the type B terms. Again, the contributions for £ = 10 vanish
due to the Dirac structures of the operators involved.

4 Finite Bremsstrahlung Contributions of Type A

The bremsstrahlung contributions taken into account by introducing the functions w;($)
cancel the infrared divergences associated with the virtual corrections. All other brems-
strahlung terms are finite. This allows us to perform their calculation directly in d = 4
dimensions.

The bremsstrahlung contributions from 57 — 58 and 68 — 69 interference terms as well as
the Og — Og term oppose no difficulties. The sum of these three parts can be written as

s ds s s
(aem)2 (ozs ) My pote | Vis Vip|* G

4 A1 48 73

dFBrems,A B dF]7381rems N drngems N dF8BSrems

X (2 Re [078 Trg + Cg9 7'89} + Css 7'88> . (13)

The coefficients ¢;; are given by

~ ~ ~ ~ ~ 2
crg = Cp - CLODCOD* g9 = Cp - COPVCPM* | cyg=Cp- ‘Céo’eﬁ)’ ; (14)
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while the quantities 7;; read

8
Trg = {25—27r2—27§+3§2_§3+12 (5+5°) In(3)

935

19§ -] (o] )

T
—12 <(1—§)\/§\/4—§—2arctan %])
-5

X (arctan[ 1 g S ] — arctan [%] )}, (15)

s = 5 {—87?2+(1—§) (77— 5—45%) —24Li(1 - 3)

‘i]) In(3) +48Re<Li[3;§ e _;)fng

6 205+ 1052 —-33° 87 +8 ¢ 4—35
_ — 87 arctan =
NERVZ 5
4—3 S5v/4 —§
X (arctan[ AS] —arctan[\/g—AS]>}a (16)
S 2—35
T89 = 3

3{§(4—s)—3 41In(8)(1— 35— 5%

—8Re<L1 =+ fvz _8] i

o 1 )

—45-95+81In :

2
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5 Finite Bremsstrahlung Contributions of Type B

In this section we consider the bremsstrahlung contributions from O; and O, and interfer-
ence terms with O, Og, Oy and O19. As mentioned before, interferences with O,¢ vanish
due to the Dirac structures of the operators.

The bremsstrahlung contributions discussed in this section all involve the matrix elements
associated with the two diagrams depicted in Fig. 3.4. Their sum, J,g, is given by

T €Js Qu A A7 N
Jos =g 2" | B0, 5.r) Bis + B, 5,0) Bio — E(3,7,4) % By

Q/B A Qa X - )\
—F — Aiyg — F —A L— 1
(Oé,T, Q)QT 126 (ﬁar7 Q)QT la7 27 ( 8)

where ¢ and r denote the momenta of the virtual photon and of the gluon, respectively.
The index « will be contracted with the photon propagator, whereas 3 is contracted with
the polarization vector €’ (r) of the gluon. J,3 and Ai; are obtained from J,5 and A

[1], respectively, by setting 7 = 0 and dropping terms proportional to rg. The matrix
E(a, ,r) is defined as

1
E(a, B,r) = 507767 = 1757%)- (19)
Due to Ward identities, the quantities Aij, are not independent of one another. Namely,
qo‘jag =0 and Tﬁjag =0

imply that Ais and Aig can be expressed as
— — q2 — — —
Ais = Aoz + q—Az’27, Aig = Aiog . (20)
T

@s in addition Aiss = —Aiss, the bremsstrahlung matrix elements depend on Aisy and
Aioy, only. In d = 4 dimensions we find

_ 1 1— 2

Adgz = S(Q‘T)/ dmdyu,
o C

3 1 1— 2

Aiy; = 8(q-r)/ dxdy%, (21)
0

where
C=mi-2zy(l—y)(gr)—q’y(1—y) —id
In the rest frame of the b quark and for fixed § = ¢*/m?, the phase space integrals which

one encounters in the calculation of dI'Brems:B /q3 can be reduced to a two-dimensional
integral over F, = E,./my, and E; = Es/m;, where E, and Ey are the energy of the gluon
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and the s quark, respectively. In the following it is useful to introduce the integration
variable w = 1 — 2F instead of E,. The integration limits are then given by

E, e {wQ S,wzws} and w € [§,1].

For fixed values of 3, the quantities Aiss and Ais; depend only on the scalar product ¢-7,
which, in the rest frame of the b quark, is given by (w — §)m?/2. The integration over
E, turns out to be of rational kind and can be performed analytically. The remaining
integration over w, however, is more complicated and is done numerically. The result can
be written as

dFBrems,B _ <aem>2 (&) G%' mg’pole |VZ; V;b|2 y
ds 47 4 48 73
1

/dw [(011 + 12 + €22) T2 + 2 Re[ (ci7 + €a7) Tor + (c15 + C28) Tos + (€19 + C29) 7’29]] . (22)

The quantities 7;;, expressed in terms of Aigs and Aiyr, read

x {[3w2+2§2(2+w) — 5w (5 - 2w)] [Aiss|"+

252 (24 w) +sw(l+ 2w)} | Ay | +4§[w (1—w)—3(2+ w)] :Re [AiyAil,] } (23)

81 _
™= 55o X {[(1 —w) (4§2 —§w+w2) +§w(4+§—w)ln(w)]Ai23
Sw

- [4 Fl-—w)+s5wd+5—w) ln(w)] Aim}, (24)

Tog = géw(i}—é) X {[(w )7(28 —w)(1 )i|A223— [25( )3( )]A127
+§w[(1+2§—2w)&23—2(1+§—w)&'27] 'm{(ug—w)(jum—w))”’

41 . . . 3 -
T = g% {[2 (1 —w)(s+w) —|—43w1n(w)] Algz—

[2 (1 — w) (5 + w) + w(3§ +w) ln(w)] &27}. (26)
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The coefficients ¢;; in Eq. (22) include the dependence on the Wilson coefficients and the
color factors. Explicitly, they read

2 ~
en =G, -] tir = Cpy - COCOD = O OO,
c12 =Cr, - 2Re [Cfo)(féo)*} . s =Cyy - OO = Cp - OO (27)

Cro = CTQ ) Cl(o)ééo,eff)*, Co9 = C CéO)ég(’O,eﬁ)*,

Y

Coo = CF . ‘Céo)

where the color factors Cr, C;, and C,, arise from the following color structures:

N2 -1
Y TUT=Cpl, Cp=———,

2N,
N2 -1
TTT*T"T°T" = C,, 1, Cry =~
azbc 1 1 8 Ncg
and N2
arpbrab _ c
S 1T T = 1, Gy = - N

a,b

Finally, we list the explicit formulas for Ay and Adgy expressed as a function of § and the
integration variable w. We obtain

o) -o-ja() e@)] @
Aigy = 2 {GO (2) - GO<%>] : (29)

where the functions G(t) (kK > —1) are defined through the integral

Aigy = =2+

/dxa: In[1 —tz(l—2)—1id], Gl(t):%Go(t).

Explicitly, the functions G_1(t) and Gy (t) read

t 2 t
G_1(t) = : (30)
—mﬁmbﬁﬁﬂ)—§+2mﬂﬂghﬁ, t>4

W,/%—2—21/% arctan(,/%), t<4
—imy /=2 2+2\/ ln(

27rarctan< 4;t>—”—2—2arctan2< 4_t>, t<4

> t>4
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6 Numerical Results

First, we investigate the numerical impact of the finite bremsstrahlung corrections [see
Egs. (13) and (22)] on the dilepton invariant mass spectrum. Following common practice,
we consider the ratio

1 AT (b — s 0+0)

Rauarni(5) = T — X.ew) s ’

(32)

in which the factor mj . drops out. The explicit expression for the semileptonic decay
width I'(b — X.eD,) reads

G2 m5 m2 2
I'b— X.em,) = —F "bpole |Vcb|2 . g( ;,pole> K(m—;> ’ (33)

3
192w b pole my

where g(z) =1 —82 +82% — 2 — 1222 In(z) is the phase space factor, and

2as(my) f(2)

Ko=)

(34)

incorporates the next-to-leading QCD correction to the semi-leptonic decay [18]. The
function f(z) has been calculated analytically in Ref. [19]. It reads

25 2 2 4 1
f2)=—(1-2% (;—ﬁwfzz) + 2 In(2) (20+9Oz—§z2+—723>

3 3
1 4 1
+ 22 In*(2) (36 +2%) + (1 — 2% (37 - % z+ ?7 22) In(1 — 2)

—4 (14302°+2*) In(2)In(1 — 2) — (1 +162° + 2z*) (6 Li(z) — 7°)

—32232(1 + 2) {H —4Li(v/2) +4Li(—v2) — 2In(2) In (%)} . (35)

We stress that the function f(z) refers to on-shell renormalization of the charm quark
mass.

In Fig. 6.1 we consider the contribution ARquak($), which is due to the finite brems-
strahlung corrections in Eqs. (13) and (22), for three values of the renormalization scale
(u=2.5,5and 10 GeV) and for fixed value m./m; = 0.29. The values of all the other input
parameters are as in Ref. [1]. In Fig. 6.2 we combine the new corrections with the previous
results. The solid lines show the ratio Rguark($), including the new corrections, for the val-
ues 1t = 10 GeV (uppermost curve), pp = 5 GeV (middle curve) and p = 2.5 GeV (lowest
curve) and for fixed value m./m;, = 0.29. The dashed lines represent the corresponding
results without the new corrections. We find that for § = 0.05 the new corrections increase
the ratio Rquark(8) by ~ 3%, while for larger values of § their impact is even smaller. When
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P L Figure 6.1: The new contribution
N ] ARyuark(5) due to finite bremsstrahlung
= 15 - corrections for yu = 2.5 GeV (uppermost
'g . curve), ;4 = 5 GeV (middle curve) and
g 1 ] =10 GeV (lowest curve) and m./m;, =
= C ] 0.29.
= - -
5 051 g
q C ]
0 Coovv v b v v b v v by g gy
0.05 0.1 0.15 0.2 0.25
5
L L L B B L B Figure 6.2: The solid curves show the ra-
- - tio Rquark($) including the finite brems-
. . i strahlung corrections while the dash-
L L= 7 dotted curves show the corresponding re-
= N . sults without the new corrections. The
@; . : uppermost curves (solid and dash-dotted)
5 05 i correspond to p = 10 GeV, the middle
o - - curves to = 5 GeV and the lowest curves
- | | | i to p = 2.5 GeV. m./my = 0.29.
0 N T L1 11 L1 11 L1 11

0.05 0.1 0.15 0.2 0.25

§
including the finite bremsstrahlung corrections we obtain

0.25

Ruark = /d§ Rauark(8) = (1.27 £ 0.08()) x 107°

0.05

for the integrated quantity Rquark- The error is obtained by varying p between 2.5 GeV
and 10 GeV. For comparison, the corresponding result without the finite bremsstrahlung
correction is Rguark(8) = (1.25 4 0.08(p)) x 1077 [1].

Among the errors on Rqu.k($) due to uncertainties in the input parameters, the one related
to the charm quark mass is by far the largest. We therefore only comment on this error. In
principle, the uncertainties induced by the charm quark mass have two sources. First, it is
unclear whether m, in the virtual- and bremsstrahlung corrections should be interpreted
as the pole mass or the MS mass (at an appropriate scale). Secondly, the question arises
what the numerical value of m, is, once a choice concerning the definition of m. has been
made.
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L L L L L B L B Figure 6.3: Rquak(s) for various values
and definitions of m.: The three bands
are obtained by setting mPo /mP®°=0.31
(uppermost), 0.29 (middle) and 0.27 (low-
est) in I'(b — X.er.). In the rare de-
cay b — X, 0t0~ we set mMS/mPe =
0.18,0.22,0.26. This leads to three curves
all within a narrow band. See text.

unark(é) [1044]

0‘4 I|III|III|IIIIIII|III
0.06 008 0.1 012 0.14 0.16

§

To illustrate these problems more clearly, it is useful to first consider the process B — X,7.
There, the one-loop matrix elements of O; and Os vanish, implying that the charm quark
mass dependence only enters at O(a;). Formally, one can interpret m. in these O(ay)
expressions to be the pole mass or the MS mass because the difference is of higher ‘order
in a,. Nevertheless, it has been argued in the literature [20] that the choice m(u)
with o € [m., my] seems more reasonable than mP°° (which was used in all the previous
analysis) due to the fact that the largest charm quark mass dependence comes from the real
part of the two-loop matrix elements of O; and Oy, where the charm quarks are usually
off-shell, with a momentum scale set by mgde (or some seizable fraction of it). It was
shown in Ref. [20] that the definition of the charm quark mass leads to a relatively large
uncertainty in the branching ratio: Changing m./m; in I'(B — Xv) from 0.29 £ 0.02 to
0.22 £ 0.04, ie from mP°'/mP" to mMS /mP (with u € [m,, my)), causes an enhancement

of BR(B — Xv) by ~ 11%.

In the process B — X, /¢1T¢~ this problem is less severe because m, enters already the
one-loop diagrams [ie at O(a?)] associated with O; and O,. As the two-loop calculation
requires the renormalization of m,, the definition of m. has to be specified. Therefore, the
two-loop result explicitly depends on the definition of the charm quark mass. This can be
seen from [1]. For the pole mass definition, the results for the two-loop matrix elements of
O, and Oy, encoded in Fl(;)’(g), are given in Eqgs. (54)—(56), while those corresponding to

the MS definition are obtained by adding the terms AF fg%cren given in Eq. (49).

In the following, we investigate the impact of pole- vs MS definition of m, in the rare decay
b — X {70~ on the ratio Ryua(5). In the semileptonic decay b — X, e 7, the charm quark
is basically on-shell. Therefore, we always use the pole mass definition for the charm quark
mass in ['(b — X.e7,), which enters Rquari(8). In Fig. 6.3 we set mPo/mP equal to
0.31, 0.29 and 0.27 in the decay width I'(b — X.eD,). In the rare decay b — X (1(,
on the other hand, we use the MS definition for m,, and put m}S/ mi’Ole = 0.18,0.22 and
0.26 (independently of mP°/m>*°, to be on the conservative side). This leads, for a given
value of mpele /mfde, to three curves which form a narrow band. The uppermost band
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T T T T 1 Figure 6.4: Rquak(S) for various values

1 ] and definitions of m.: The solid curves are
. i obtained by setting mPo/m>*® = 0.33
TO - (uppermost), 0.31, 0.29, 0.27 and 0.25
= 0.8K 7] (lowest) in the rare- and the semileptonic
@ - decay. The dashed lines are obtained by
E S S —— taking mMS/mP*® = 0.22 in the rare de-
=~ - TR e 2 cay and mP°®/mP*'® = 0.31, 0.29 and 0.27
i i inI'(b — X.er,). See text.
0‘4 1 1 1 1 | 1 1 1 1 | 1 1 1 1
0.05 0.1 0.15 0.2

corresponds to mP/mP® = 0.31, the middle to 0.29 and the lowest to 0.27. The curves
with the strange behavior for § > 0.13 all belong to the lowest value mM>/mP® = 0.18.
As the result for the two-loop corrections was derived in expanded form, which only holds
for § < 4m?/m?, the strange behavior illustrates that, for m./m; = 0.18, the result is
not valid for § > 0.13. In Fig. 6.4 the three middle solid curves are obtained by adopting
the pole mass definition of m., both in the rare and in the semileptonic decay. They
correspond to m{,’(’le/m}fde = 0.31, 0.29, 0.27. The dashed curves, on the other hand,
are obtained when the MS definition with mMS/mP*® = 0.22 is used in the rare decay
width. One finds that for § > 0.06 the results for Rguamx(5) are somewhat larger when
using the pole mass definition of m,. in the rare decay. For values below § < 0.06 the
situation is reversed and thus the same as for b — X v [20]. Again, the strange behavior
of the dashed curves indicates that, for m./m, = 0.22, the expanded formulas become
unreliable for values of s > 0.19 . The thick solid lines are obtained by adopting the
pole mass definition on the whole and correspond to m./m;, = 0.33 (upper) and 0.25
(lower). In summary, the figure shows that the quark mass uncertainties can effectively
be estimated by working with the pole mass definition throughout, provided one takes the
rather conservative range 0.25 < mP°/mP* < 0.33. Finally, in Fig. 6.5 we show Reuark(3)
in the full range § € [0.05,0.25] for mP°'/mP*'® € [0.25,0.33]. Note that for these values of
me/my the expanded formulas hold just up to § = 0.25.

Comparing Fig. 6.2 with Fig. 6.5, we find that the uncertainty due to m./m; is clearly larger
than the leftover u dependence. Varying m./m; between 0.25 and 0.33, the corresponding
uncertainty amounts to +15%.

To conclude: We have calculated the finite gluon bremsstrahlung corrections of O(ay) to
['(b — sf*¢7), taking into account the contributions of the operators O1, Oy, O7, Og, Oy
and O19. We have worked out the numerical impact of the new corrections on the invariant
mass spectrum of the lepton pair in the range § € [0.05,0.25] and found an increase of
about 3% for § = 0.05 and even less for larger values of 5. Furthermore, we investigated
the uncertainties of Rguak(S) due to the definition and numerical uncertainties of the
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L N B B B Figure 6.5: Rquark(8) for meo®/mp*°=0.33
(uppermost), 0.31, 0.29, 0.27 and 0.25
(lowest) in the rare- and the semileptonic
decay in the full range § € [0.05,0.25].
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5
charm quark mass. We found that these errors can be reliably estimated when working
with the pole mass definition of m,, provided one takes the rather conservative range

0.25 < mP'e/mP < 0.33.
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Auxiliary Quantities A;, Ty, Uy and Wy

A Auxiliary Quantities A;, Ty, Ug and W,

The auxiliary quantities A;, Ty, Uy and Wy, appearing in the modified Wilson coefficients
in Eq. (3) and in the effective Wilson coefficients in Eqs. (7)—(9) are the following linear
combinations of the Wilson coefficients C;(u) [12, 16]:

A7 = ﬁ Cr(p) — %Cs(u) - SCM) - ? Cs(p) — % Co(p) ,

Ag = ﬁ Cs(p) + C3(p) — é@(u) +20C5(p) — % Co() .

Ay = ﬁ Co (1) +§; Ci(1) 7y 111(%) + %Cz(u) + %4 Cs () + S—;l Col1) ,

Ao = =15 Caol). (36)
Ty =5 Cul) + Cali) + 6 (1) + 60 Ci(p)

Uy = = 3 Colp) = 3 Cal1) = 38 Cs(1) = 5 Col),

Wo == 3 Cali) = 5 Calp) = 8 Cs(0) = = Col().

The elements %-(g) can be found in [16], while the loop-function h(z, §) is given in Eq. (4).

In the contributions which exphcltly involve virtual or bremsstrahlung corrections only the
leading order coefficients A 9 , Uéo) and Wéo) enter. They are given by

0 1 1 0 4 0 20 0 80 0
A(7)=C§)—§O§)—§CL§)—§C§)—§C’6(),
1 10
A0 =+ 0 - Lo v 200 - o,
4 4 64
A9 ==Z (e + C(1>+ZC(O 75 (M)+§O§°)+§O§°) 270
0 1
szcw, (37)
T = C(O) P + 605" + 600,
S 2 32
U =0 — 20 —380 - =,
2 3 3
0 1 0 2 0 0 32 0
Wy == -0 -8 - S

We list the leading and next-to-leading order contributions to the quantities A;, Ty, Uy and
Wy in Tab. A.1.
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1 2.5 GeV 5 GeV 10 GeV
s 0.267 0.215 0.180
c© —0.697 —0.487 —0.326
¥ 1.046 1.024 1.011
(AP AM) (—0.360, 0.031) (—0.321, 0.019) (—0.287, 0.008)
AQ) —0.164 —0.148 —0.134
(A, A1) (4.241, — 0.170) (4.129, 0.013) (4.131, 0.155)
(7O, ) (0.115, 0.278) (0.374, 0.251) (0.576, 0.231)
(U, u) (0.045, 0.023) (0.032, 0.016) (0.022, 0.011)
(W, wh) (0.044, 0.016) (0.032, 0.012) (0.022, 0.009)
(A9 A%) (—4.372, 0.135) (—4.372, 0.135) (—4.372, 0.135)

Table A.1: Coefficients appearing Eqs. (7)—(9) for p = 2.5 GeV, u = 5 GeV and p =
10 GeV. For a,(u) (in the MS scheme) we used the two-loop expression with five flavors
and ag(mz) = 0.119. The entries correspond to the pole top quark mass m; = 174 GeV.
The superscript (0) refers to lowest order quantities.
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QCD Corrections to b — d£7£¢~ in the
Standard Model

ABSTRACT

We present the calculation of the virtual O(as) corrections to the in-
clusive semileptonic rare decay b — d{¢*¢~. The calculation of these
contributions is an extension to the b — s¢*T¢~ corrections [1], ie the di-
agrams induced by the four-quark operators O, and Oy with an u quark
running in the quark loop are no longer Cabibbo suppressed. We discuss
in detail the calculation of the corresponding matrix elements. The ana-
lytic results for the process b — d{*{~ are represented as expansions in
the small parameters § = s/m?, 2 = m?/m? and s/(4m?), where s is the
invariant mass squared of the lepton pair. We also include the complete
set of O(ay) bremsstrahlung contributions.



Part VI: QCD Corrections to b — d ¢~

1 Introduction

For the transition b — s ¢*¢~ the contributions with an u quark running in the fermion loop
is Cabibbo suppressed, ie |\, | < |\L[, [A}|, where | = V{V,,. It is a save approximation
to set |\, = 0. In the case of b — d ¢*¢~, this is no longer true, and we have to calculate
the u quark diagrams as well: |A\,| ~ |[A| = [A\e], Ay = V5V, Setting m,, = 0 seems to
be a substantial simplification of the calculations because they involve one scale less than
c quark diagrams. This is definitely true for some of the diagrams. Others, however, get
quite more involved because the techniques we used for their counterparts [1], where we
could use the ratio §/(4 z) as an expansion parameter, fail. The quantities § and z are
given by § = s/m? and z = m?/mZ, where s denotes the invariant mass squared of the
lepton pair.

Another problem arising in the analysis of b — d ¢*¢~ are the large resonant contributions
due to @u intermediate states. Unlike in the b — s/T¢~ case, the threshold of these
resonances lies rather low. Therefore, we may no longer evade integrating over these
domains, where only model dependent predictions are available.

A big part of the work for b — d ¢~ has been completed by now. However, the results can
not yet be presented in paper form. Therefore, in this part, we merely give an account on
what has been done so far and introduce two methods used to solve some of the integrals.

2 Effective Hamiltonian

The effective Hamiltonian mediating the transition b — d/*¢~ or b — d~*, respectively,

is given by
2

4GF 10
- Ci(A O + A0 — NS C, 04|

with A\, = V3V, The operator basis we choose accordingly to [12]

Heff

Ov = (dpy T ur)(apy*Tg), Oy = (dpy,ur)(igy*br),

Of = (dpyuTcr)(Ey*T ), 05 = (diyuer)(ery’de),

O3 = (duube) ¥, (@"a), Or = (du7T71) 3, (37T ),

Os = (dymwbe) 0@y %0),  Os = (deyur,Tn) 3, (@ v Tq), (1)
Or = Smy(dpo*br)Fu, Os = Lmy(do" Tbr)G2,,

Oy = S(dibe) S (y"0), O = S(dybr) S(0r"s0),

where the subscripts L and R refer to left- and right-handed components of the fermion
fields, respectively.
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b ovg d b ows d b ows d
. X C{ X o o C% — o o X
S S
S S
u, ¢ S u, ¢ S CCEO0GT
[ 990
a) c)
b ove d b ove d
- Y12
€ €
2 U, C 2 u,c
a9 2y
b) d)

Figure 3.1: Complete list of two-loop Feynman diagrams for b — dy* associated with the
operators O} and Oy°. The fermions (b, d, u and ¢ quarks) are represented by solid lines,
whereas the curly lines represent gluons. The circle-crosses denote the possible locations
where the virtual photon (which then splits into a lepton pair) is emitted.

The factors 1/¢g% in the definition of the operators Oz, Oy and O as well as the factor
1/gs present in Og have been chosen by Misiak [2] in order to simplify the organization
of the calculation. With these definitions, the one-loop anomalous dimensions |[needed
for a leading logarithmic (LL) calculation] of the operators O; are all proportional to
g%, while two-loop anomalous dimensions [needed for a next-to-leading logarithmic (NLL)
calculation| are proportional to g2, etc.

The formally leading term ~ (1/g?) C’éo) (up) to the amplitude for b — d¢7¢~ is smaller
than the NLL term ~ (1/¢2)[g2/(167?)] C () [3]. We adapt our systematics to the
numerical situation and treat the sum of these two terms as a NLL contribution. This is,

admittedly some abuse of language, because the decay amplitude then starts out with a
term which is called NLL.

3 Virtual O(a;) Corrections to the Current-Current
Operators O;"° and Oy"°

In this section we present the calculation of the virtual O(as) corrections to the matrix
elements of the current-current operators O}"° and Oy°. Using the naive dimensional
regularization scheme (NDR) in d = 4 — 2¢€ dimensions, both ultraviolet and infrared
singularities show up as 1/€" poles (n = 1,2). The ultraviolet singularities cancel after
including the counterterms. Collinear singularities are regularized by retaining a finite
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down quark mass my. They are cancelled together with the infrared singularities at the
level of the decay width when taking the bremsstrahlung process b — d £ ¢~ g into account.
Gauge invariance implies that the QCD corrected matrix elements of the operators O; can
be written as

(d e 10:b) = EP(Og)iree + F7 (O tree (2)

where (Og)iree and (O7)ee are the tree-level matrix elements of Oy and O, respectively.
Equivalently, we may write

A

@10 = =12 [F7Ohse + F (O] ®)

where the operators 57 and 59 are defined as

O =

g ~ Qs
T=0n Oy="0 (4)

We present the final results for the QCD corrected matrix elements in the form of Eq. (3).

The full set of the diagrams contributing at O(a;) to the matrix elements
M = (deT7|Of[b) (i =1,2; ¢ =u,c) ()

is shown in Fig. 3.1. As indicated, the diagrams associated with O}"“ and Oy“ are topo-
logically identical. They differ only by the color structure. While the matrix elements of
the operator Oy“ all involve the color structure

N2 -1

T — 1 _ '
; C’F ) C’F 2NC )

there are two possible color structures for the corresponding diagrams of O}, viz

= ZT“TbT“Tb and T, = Z TeTt T T
a,b a,b

The structure 7; appears in diagrams 3.1a)-d), and 7 enters diagrams 3.1le) and 3.1f).
Using the relation

o 1 1
Z Ta,@T’WS == _W 5aﬁ6’y5 + 5 504565’)/7
we find that 7y = C,1 and =, = (7,1, with
N2 —1 (N2 —1)°
CTl = — 4N62 and 07-2 = 4—]\73
Inserting N, = 3, the color factors are Cr = %, C. = —;2) and C,, = %. The contributions

from O} are obtained by multiplying those from O5“ by the appropriate factors, ie by

Cr,/Cr = —% and C,,/Cp = %, respectively. The regularized O(as) contributions of the
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operators Of and Of§ are discussed in detail in Ref. [1] (cf Part III of this thesis). In the
following exposition we therefore focus on the discussion of the contributions from Of to
the individual diagrams.

We use the MS renormalization scheme, ie we introduce the renormalization scale in the
form 712 = p? exp(yg)/(4 ) followed by minimal subtraction. The precise definition of the
evanescent operators, which is necessary to fully specify the renormalization scheme, will
be given later.

3.1 Tensor Integrals and Irreducible Numerators

We follow [4] and derive a method that allows to express tensor integrals of generic dimen-
sion d in terms of scalar integrals of higher dimension.

An arbitrary L loop tensor integral with N internal and E external lines can be written
as a linear combination of integrals of the form

GO ({su} {mt}) = [ <H dk>ﬁHkP ' )
’ i (2m) j=1 I=1 T
where 1 ) . .

P, = (e and k; = ;wjnkn +;njmqm.

k; and ¢; denote the loop and external momenta, respectively. The matrices of incidences
of the diagram, w and 7, have matrix elements w;;, n;; € {—1,0,1}. {s,}, finally, denotes a
set of scalar invariants formed from the external momenta ¢;. In principle, the exponents
v; would generically be equal to 1. However, often two or more internal lines are equipped
with the same propagator. This may be taken into account by reducing N to N°T < N,
thus increasing some of the exponents v;. Applying the integral representations

and

T

Uk = (=i 1 8(a?>m exp | i(a;k;)]

=1

, (8)

a;=0

allows us to easily perform the integration over the loop momenta by using the d dimen-
sional Gaussian integration formula

[atk e[ (ar - 2m)] =1 ()" e[ -]
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We find the following parametric representation:

¢ =i <ﬁ)ﬁ T H T
XZZ% exp[ ({S“} ®0) Zar (m? —ze] . 9)

The differentiation with respect to a; generates products of external momenta, metric
tensors g, and polynomials R(«) and provides an additional factor D(a)~'. Because of

exp [—zZar —ZZO&T ] , with 8j = %,

j
we may replace the polynomials R(«) with R(i0). The additional factor of 1/D(«) can
be absorbed by a redefinition of d, ie by shifting d to d + 2 and multiplying with a fac-
tor (4im)f. The crucial point is, that this way all factors generated by differentiation
with respect to a; may be written as an operator which does not depend on the inte-
gral representations we have introduced in Eqs. (7), (8). Therefore, it is possible to write
tensor integrals in momentum space in terms of scalar ones without direct appeal to the
parametric representation (9):

R(i0) exp

L

/ (H o )HHW 2 =047 [ (H o )H Oy (0

i=1 j=1 1=1 i=1

where the tensor operator 7' is given by
T(q,0,d%) = exp| - z’Q({@-},a,a) (4m)L dt|

X H H exp [z Q({5:}, a,a) (4im)" d+]

J=1 [=1

(11)

aj :'0
o ;=10;

The operator d* shifts the space-time dimension of the integral by two units:

ar 6O ({s). fm2}) = G0 ({s.}. m2)).

The quantities s; are scalar invariants formed out of external momenta ¢; and auxiliary
momenta a;. Notice that throughout the derivation of the tensor operator 7" the masses
m; must be kept as parameters. They are set to their original values only in the very end.
In Eq. (6), the product over k; is very often replaced by a product over k;. This slightly
complicates the notation of the derivation of Eqgs. (10) and (11). The result will be of the
same form, however.
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3.2 Integration by Parts

According to general rules of d dimensional integration, integrals of the form

/ 2 0 ki’
7 m _ Z;
Ok; vazl (k? —m3 + ie) ’
vanish. There may exist suitable linear combinations

/ddk 9 Zl cll;:;t
AP AT — .\ Y
Ok; H;VZI (k:]2 —mj 4 e)

that lead to recurrence relations connecting the original integral to more simple ones. The
task of finding such recurrence relations, however, is in general a non-trivial one. A criterion
for irreducibility of multi-loop Feynman integrals is presented in [5]. In [4], the method of
partial integration is combined with the technique of reducing tensor integrals by means
of shifting the space-time dimension (cf preceding section).

The integral

Flsfll)lgljgl/4l/5 = /ddl ddr —[1/11121/31/41/5 =
1
d*l d° _ _ . . ;
/ "0+ 9 [+ )

enters the calculation of diagrams 3.1c) (p”? = 0). At the same time it is a very good
example to illustrate the integration by parts method. The operators 1%, 2% .. are
defined through

(12)

+ ._
1 fl/1V2V3V4V5 T fV1:|:1V2V3V4V57 R

The present case is especially simple because we only need to calculate one derivative.
Using the shorthand notation 1, 1,us04s = I,) We get

0
S Ly = [d = 20r22F — 20 (14 1) 8% =205 (r +9) 5| .
Ty

Scalar products of the form a - b we write as [a* + * — (a — b)?] /2 and find

0
a—?"“ ‘[{Vz} = |:d — 21/2 — Vg — Vs — 1/3(2_ - 1_) 3+ — Us 2- 5+:| ]{,/Z}
Ty

At this stage we might also reduce some of the scalar products by shifting the dimension.
The corresponding procedure is presented eg in [4]. In the present case, however, the pure
integration by parts approach suffices. The identity

0
/ddT’a—T#TM [{,,Z.} =0
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yields directly the desired recurrence relation for the integral F,,(fl 2,21,3,,41,5 [Eq. (12)]:

(d) . 1/3(2_ - 1_) 3+ + U5 2~ 5+ F(d)

V1Vu3VaVs

(13)

d -2 Vg — V3 — Us Vivab3ials’
Subsequent application of this relation allows to express any integral F®{1;} with indices
v; € Nt as a sum over integrals F¥{y;} with at least v; = 0 or 1, = 0. The same

recurrence relation as for F {(i)} applies for the integral F {(i)}:

I P — S —
ilsen = [ 4 o o= s 7

- - _1-)3% —5+ -
(d) :V3<2 1 )3 +V52 5 F(d) (14)

V1V2V3V4Vs5 )

V1V2V3V4ls5 d—2vy — 13 — s

where p? = m?. This relation will come in handy when evaluating the diagrams 3.1d).

The general procedure is the following:

e We express, as far as possible, all scalar products in the numerator of a given Feynman
integrand in terms of inverse propagators P, and cancel them down.

e We write the integral as a sum over tensor integrals of the form (6), possibly with
products over k!' instead of k!'. For each of those integrals the tensor operator T is
determined in order to reduce the problem to scalar integrals with shifted space-time
dimension.

e We apply appropriate recurrence relations to reduce the number of propagators in
the integrals — and hope that we can solve the remaining integrals.

It is worth mentioning that, sometimes, recurrence relations obtained by combining inte-
gration by parts and dimension shifting can help, too. In general, however, this will only
allow us to find a set of master integrals that are all of generic dimension d. Unfortunately
it will not help to lower the power of a propagator to zero. In [6] an algorithm for calculat-
ing two-loop propagator type Feynman diagrams with arbitrary masses is proposed. The
combined method allows to reduce the problem to a set of 15 essentially two-loop and 15
essentially one-loop master integrals.

3.3 Unrenormalized Form Factors of Of and OF

The matrix elements of Of and Of are discussed in detail in Ref. [1], where the unrenormal-
ized form factors Frz” of (d0T0~|O5|b) (a = 1,2), corresponding to diagrams 3.1a)-3.1e),
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are given in the form

Fa(fc’g) = Z c((;??l)m 517 (8) 2 In™(2),

i7j7l7m
where 7, 7 and m are non-negative integers and [ = —i, —i + %, —i+1,..., 8§ =s/m} and
z = m?/m}. Because of the lengthy result, we cite it only in parts in this paper.
We use the abbreviations L =1In(s), L, =In(u/my) and L, = In(z)/2. The renormalized

form factors F ) and F ) of the sum of dlagrams 3.1a)-e) are

1424 16 64 16 16 32
FO= (-4 —int — L) L,— — L, Lo+ [ —— — — ') L
Le ( 729 Ta3'" a7 ) “Ta3 +(1215 135~ ) :

4 8 5 16 32 3 3 256 5
48 )y O 2 ) e 20 15
+<2835 315~ ) we +(76545 8505~ ) w gy tet A (19)

V2R

256 32 128 32 32 64
Y = ( m——LC>LM+—LuLS+<——+— I)L,ﬁ

243 81 9 81 405 45
- (—%+%z 2) L8+ (—% - 2235 z—3) L, AM%H + 9 (16)
M= - ;ZiL + 0, FQ(?_%GL + 7. (17)
The analytic results for flg), f1 , (9) , and f are decomposed as follows:
SO =37 kS L+ Zpa i 8" L (18)
ivjilm
For the quantities p((fzj, which collect the half-integer powers of z, and the coefficients /i((lbz i

we refer to Appendix B of Ref. [1].

3.4 Unrenormalized Form Factors of O} and O3

The remainder of this section is organized as follows: we first give the results for diagrams
3.1a) and b), which are calculated by means of the Mellin-Barnes approach [7]. We then
turn to the calculation of diagrams 3.1c). We have used both the Mellin-Barnes technique
and the techniques presented in Sections 3.1 and 3.2. Both approaches are discussed in
detail. Subsequently, we comment on the problems arising with diagram 3.1d). Up to
now, the corresponding integral has withstood our attempts to solve it. We then give the
form factors of diagram 3.1e). Among the diagrams in Fig. 3.1f), only those where the
virtual photon is emitted from the up or charm quark line, respectively, are non-zero. As
they factorize into two one-loop diagrams, their calculation is straightforward. We already
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mention at this point that it is convenient to omit these diagrams in the discussion of
the matrix elements of O; and Oy. We take them into account together with the virtual
corrections to Oyg.

In the following, p and p’ denote the momenta of the b and s quark, respectively, whereas
q is given by g = p —p'.

3.4.1 Diagrams 3.1a) and b)

The calculation of the contribution from diagrams 3.1a) and b) opposes no difficulties.
The diagram where the photon is emitted from the internal s quark line can be treated
by the Mellin-Barnes approach. Alternatively, we may get the result directly from the
corresponding form factors of the b — s£*¢~ transition by taking the limit m, — 0. Up to
O(3?), the form factors for the contribution of the sum of the three diagrams in Fig. 3.1a)
are given by

2 1 19 4 4 8 16
Fla) = Cp- | — 4L, ) |t s bs— onim ) = 5o Ly — - L
20l0] = Cr e T\ T ) e Ty 97 ") T ore T o7 m
n 463 38i7r+57r2 4 s 1 1 2 1) 2
- — — =S5+ (—=—=Ls |5
486 81 27 ) 97 27 27
408 2 8 p
____Ls §° _Ls o5 Ls__L2 1
+< 243~ 81 )S SRR T A T ] (19)
1 /1 37 9 P
Fla =Cp- | = (=440, )+ =+ =in+=3(1+5+8) L,
sl = Cr gz | cH 4l ) + gt gpim+ 2 8 (1484 8) L),
where
) u
Le=1 d L,=1In(t
n(s) an u n(mb)

CFr denotes the colour factor. For the sum of the diagrams in Fig. 3.1b) we find

Fz(i)[b] =Cp-

2 1 1 4 1 4 8 16
- SRV P I (i S~ S [N A Ay 5
27e2+(e+ “) (81 135" 315" 85058) o7e M o7 m
(O 10\ (172 27\ STIOST 277 20)
486 81 225 27 396900 9

83573783 6472\
S )

T10716300 T 81
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Figure 3.2: The two dia-
grams contributing to the
building block Jj;.  The
curly and wavy lines repre-
sent gluons and photons, re-
spectively.

S8 (2N (U8 A o (10861 10w
162 81 27 81 27 2835 27 '

3.4.2 Diagrams 3.1c), part 1

The diagram 3.1c) may be calculated in two ways, which we elucidate both. We first
present how to calculate diagram 3.1c) by pure Mellin-Barnes methods. We discuss this
approach for two reasons. First, it differs in some way from the calculation of diagram
la) in Ref. [1], where we used a double Mellin-Barnes representation, too. Secondly, it is
the much more complicated one of the two ways and thus points out the elegance of the
techniques introduced in Sections 3.1 and 3.2. The second solution we will demonstrate in
the following section. Both approaches yield the same result, which is, needless to say, an
excellent consistency check.

It is advisable to first evaluate the building block J*;, shown in Fig. 3.2. Using the notation
introduced by Simma and Wyler [8], it reads

U egS QU

NE (U Ta \u
M= e E(a, B,1)Ail" + BE(a, B, q)Ail” — E(B,r, Q)q7 Aigy)

RN LERPNIC) Ga p | p A
E A E A E A L—-, (21
(a,r, Q)q-r tas5 (a,r, q)q-r t26 (8, q>q-r la7 9 (21)

where ¢ and r denote the momenta of the (virtual) photon and gluon. The indices o and
6 will be contracted with the propagators of the photon and the gluon, respectively. The
matrix F(«, 3,r) is defined as

B, 1) = (1 — ¥1370) (22)
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and the dimensionally regularized quantities Az’,&u) occurring in Eq. (12) read
Az’éu) = 4B7 /dxdy [4(gr)zy(l—z)e+r*z (1l —z)(1—2x)e
S

+¢*y(2 =2y +2zy—2)e+ (1 —32)C] O,

8 = 48" [dedy[~a(gr)ay (- g)e- Py ()1 - 20)e
S

—r?z(2—2z+42zy—y)e— (1-3y)C] C7',

Az’é@? = —Aiy =8BT(q-r) /dxdya:yeC'_l_E,
s
Aigg) = —SB+(q-T)/dxdym(1—x)eC"l_e,
S
Az'gé) = 8B+(q-r)/dmdyy(1—y)eC_l_e, (23)
S

where BT = (1 + €)'(¢) 2% and C is given by
C=-2zy(qgr)—r*z2(1—2)—y(l—y)+id.

The integration over the Feynman parameters  and y is restricted to the simplex S, ie
y € (0,1 —z], x € [0,1]. Due to Ward identities, the quantities Az’,(gu) are not independent
of one another. Namely,

¢“Jop =0 and 7°J5=0

imply that Ail and Ail" can be expressed as
7 2
A = AN+ T A A = —— ALY+ ALY, (24)
q-r q-r

After the variable transformation y — /(1 — z), the quantity C' may be written as

1—
C=-z(1-2) (T+yq)2+¥q2 + 10,

where we have omitted the prime to ease the notation. The variable transformation pro-
vides the Jacobian (1 — z) and maps the integration region from the simplex on to the
unit square, ie z,y € [0,1]. The idea is, to apply a Mellin-Barnes representation directly
on C 7, ie before performing the loop integral over r. This is in contrast to the procedure
followed in [1, 9]. The Mellin-Barnes representation for the propagator (K2 — M?)~* reads
(A>0)

s a1 1 1 1 M2\
M (K7, M7, A) = (K2 — M2)> ~ (K2)> T()\) 2in /st <_ﬁ> [(=s)D(A+s).
(25)
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The integration path v runs parallel to the imaginary axis and intersects the real axis
somewhere between —\ and 0. The Mellin-Barnes representation of C~* is obtained by
making the identifications

y(1—y) ,

K?* < (r+yq? and M?*« 22247
T

The corresponding Mellin integral is given by

B ei7r>\ L 3
C™ = 2m/dtw A1 —2) My (1 —y)
v

(=) T+ A) (¢®)
[(r +y4q)?]

t+A T

We have got rid of non-integer powers of negative numbers by use of the formula
(x£i06)* = e (—z Fid)~

The variable A\ takes the value 1 4 € throughout the present calculation. Inserting the
building block, we get the following analytical expression corresponding to diagram 3.1c)

dT’ Bl (T
Mgl = —igu [ g a0 ) 3

We use the Mellin-Barnes representation for C~*, entering via J,5. The propagator struc-
ture of the integrand is then given by

1
r(r=p)[(r+yq

P =

)2] t+1+4e€ *

We may apply an ordinary Feynman parameterization for P according to

1

1 el —u)l(3+1¢
t+1+e:/dUdvu Q-wl3+i+o
D1D2D3 F(1+t+€)
1
X

[(1 —u)(1—=v)Dy + (1 —u)v Dy + uD3}3+t+e )

with Dy = 72, Dy = (r—p')? and D3 = (r+y q)*. Subsequently shifting the loop momentum
rtor+ (1 —uvp —uygq, we find

1
(1 —u)T t 1
P:/dudvu ( UI) (3+ +€) : 3+tte ?
[(1+t+e¢) (r2 — A)”e

where
A=—uvy(l—u)(m; —q¢*) —uy*(l —u)g’.
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After changing the order of integration and performing the integral over the loop momen-
tum r, we arrive at

ei7r(1+e)

29T

1
M) = eQqy g° Crii* /dt /d:v dydudvr 171 —2) 7y (1 —g)

o 0

=0T+ £+ 0) ()0 aly) | i+ ] ). (20

where P, and P, are polynomials in the Feynman parameters. We apply a second Mellin-
Barnes representation to the quantities A=

A ="My (mpuvy(l —u)(1 — 8),mj uy®(1 —u)s, ).

There are two values A can take here, namely ¢ + 1 + 2¢ and ¢ + 2¢. Correspondingly, the
integration path 4’ has to satisfy

—Re(t) —1—2¢ <Re(t') <0 and — Re(t) —2¢ < Re(t') <0,

respectively. We change the order of integration once more and do the integrals over the
Feynman parameters x, vy , © and v, which all are of the form

1

/QW”u—wW”zﬁ@wm+L«aw+ﬂ-
0

The integration paths v and 7’ have to be chosen such that all Feynman parameter integrals
exist for values of t € v, t' € 7/, ie Re[p(t,t')], Relq(t,t')] > —1. The dependence of M3'[c|
on § is of the form

. 1 AN ) .
M) = m/dt/dzt’ gt (:> [Fo(t, 1)+ S Fi(t, ) + SR (L, )] . (27)
vy il

The remaining Mellin-Barnes integrals we perform by closing both v and + in the right
half-plane and identifying the integrals with the sum over the residues of the poles enclosed
by the paths. This leads directly to an expansion in §. In the following we just give the
locations of all poles that have to be taken into account, but refrain from mentioning every
technical detail. We first care about the ¢’ integration. At this point is important not to
keep the t integration at the back of our mind. It turns out that some of the residues
we need to calculate depend on ¢ and ¢'. We consider ‘coupled’ and ‘un-coupled’ residues
separately.

Un-coupled residues
We find that we have to take into account the series of poles located at

=0,1,2,3,...,

in order to do the ¢’ integral. We sum the residues up to the desired order in §. As what
concerns the ¢ integration, we need the residues
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e of the series’ of poles at

t=0,1,23,...,
t=—€61—€2—€...;

e and of the two single poles at

t=1—2¢ and t=2-—2e¢.

Again we need only to sum the residues up to the desired order in 3.

Coupled residues
The coupled residues are somewhat more involved. They are associated with the poles in
' situated at

t = 1—t—2¢ 2—t—2¢ (for type A terms),
t'=—t—2e1—t—2¢2—t—2¢ (for type B terms).

Here we have to distinguish between terms associated with A~™72¢ (type A) and A~171=2¢
(type B) [cf Eq. (26)]. In view of Eq. (27) it becomes immediately clear that in this case
the integration over ¢ will lead to contributions of fixed order in §, ie we have to take
into account all poles enclosed by the integration path v to get the contributions of the
corresponding orders. We need the residues

e of the series’ of poles at

t=0,1,2,3,...,
t=—€6l—€2—¢...,
t=2—-4¢,3—4¢,4—4e,...;

e and of the two single poles at

t=1—2¢ and t=2-—2c¢.

We give the result of the calculation in the next section and make only a concluding
comment on the evaluation of the infinite sums. It is straightforward to write down the
explicit expression for the residues at t = n (n € N), etc. The summation over n then
yields hypergeometric functions as eg

1> |

I 1, =24+ 2¢, =3 — 3¢

302 €, —3+4e
It is rather tricky to find the corresponding e expansions. Sometimes, it is easier to do the
Taylor series expansion in € before the summation. However, for the first few terms the
expansion of the general addends is usually not valid and has to be done explicitly. Only
the remaining terms are summed up analytically. In our calculation we have chosen to
avoid explicit hypergeometrical functions.
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3.4.3 Diagrams 3.1c), part 2

To calculate diagrams 3.1c), there exists a more elegant way, which might prove very useful
for the calculation of other diagrams, too. In the following we present this alternative
approach.

The contribution of the sum of diagrams 3.1¢) is given by a combination of integrals of the
form
2] 2] [+ 2] [+ @2 [+ )2

The function D(«), which we do not need to find the tensor operators, is independent of
n; and n,. We give it as an illustration:

D(Oé) = (Oél + OZ4) (CYQ + CY5) + Qg ((1/1 + oo+ ay + &5) .

The function Q({Ei}, Q, a), however, must be recalculated for each type of tensor integral.
The expressions get quickly rather lengthy. As an example we give Q({5;}, o, a} for n; = 0,
n, = 1:

Q({si},a,a) = — (o1 4+ as + ) a5 (a1 - p') + (oo + az + g (2 + a3 + as) ) ¢*+

1
my s oy s+ agag(ar - q) — = (o +as +ag)ai. (28)

4

The tensor operator T (cf Section 3.1) for the (n; = 0, n, = 1) integral, finally, reads

T = 167T2d+ qp183(94—p’p1 (81 +83+84)85 .

The action of an operator 0; on the integral F) {(gi is

o F(Vl + ’I’L) F(d)

(d)
Fll1 voVv3lAVs v1+n vovsvavs)
I'(n)

o

ie 0; acts similar to the operators 4*. The next step is to use the recurrence relation (13).
Notice that it must only be applied to integrals with 14,5 > 0. As mentioned before, we
are left with integrals that have at least v; = 0 or 1, = 0. Hence, the remaining task is the
calculation of the two integrals

(d) (d)
F0V2V3V4l/5 a’nd Ful 01/31/4 1Z:%

In the present calculation d may take the values

d=4—2,6—2¢, 8—2¢ or 10— 2e.
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We start with the discussion of the integral F()(gQ)V3V4V5 and arbitrary indices v; € N*. After

straightforward Feynman parametrizations and integration over the loop momenta [ and r
we get

(d) _(—1)2 ' udx Lz —d)
F0y2V31/4l/5 = (47T)d ///d dz dy I‘(VQ) F(Vg) F<V4) F(V4)

000

X Dd*E ud/?*l/z;*l xl/571 yl/3+1/473717d/2 (1 - u)d/Q*l/gfl (1 - Q;,)1/271 (1 - y)l/2+l/572, (29)

where we have introduced the shorthand notation

The Feynman denominator D is given by
D=-mpy(l—y)[z+(1—2x)3] —id.

We represent D~* (A > 0) as a Mellin-Barnes integral:

1 , (=)t + A
D_>‘ = ﬁ dt ewr/\mb—Q)\ gt l,—)\—t y—/\ (1 _ $)t (1 _ y)—A ( ) ( + ) )
v

All Feynman parameter integrals are now of the form

1

a0 = 21 = 3p(0) + 1a(t) +1].

0

Again, the integration path + has to be chosen such that all Feynman parameter integrals
exist for values of t € 7, ie Re[p(t)], Re[q(t)] > —1. The expression for Féd) now

VU3 UaVs
reads
—idm. 2(d—%) 4
d . € m d
F()(Vgugwu/s = _Stwr<§ — V= VS) F<d_t_ ZV1> F(t_ d+2) X
=2

D(—t)D(vy + ) T(2 — v3) T(4 — 1)

. (30
F(l/g) P(l/g) F(l/4) F(l/5) F(d— V3 — 1/4) F(g d/2 — E) ( )

By inspection of the explicit expressions, we get the following conditions for Re(t):
Re(t) > —1va, Re(t) <d—vy —v5—uy. (31)
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To perform the integration over the Mellin parameter ¢, we close the integration path in
the right half-plane and use the residue theorem to identify the integral with the sum over
the residues of the poles located at

t=0,1,2,..., (32)

t=d—1vy—v3—uvy, d—vs—v3—1u+1, d—1vo—v3—1v4+2,....

The constraints (31) ensure that the path « separates the series of poles that extends to
the right from the series extending to the left, ie we have to take into account none of
the poles located at t = —vy,—1y — 1,... or t = d—X,d— X —1,.... In view of the
factor §" in Eq. (30), the evaluation of the residues at the pole positions listed in Eq. (32)
corresponds directly to an expansion in s. Notice that closing the integration path in the
right half-plane yields an overall minus sign due the clockwise orientation of the integration
contour. The evaluation of the integrals Flff%yy, s 1s completely analogous and needs not
to be discussed further.

Reducing tensor integrals to scalar ones and applying recurrence relations proves, in the
present case, to be quite efficient. The form factors of diagrams 3.1c¢) we find to be

0 2 1(5 4L, 8 4ir\ 16
= e (g (5 r g ) r g (33
1 2 102w 8am 572
= —6L,+ 7 L2 ———L,— —
3 HERCREE 3 3
4 2 272 2 272
- AL LA+ ) s+ (-1 -2L,+ P+ |4
+<3 +3 L+ 9)s+( +3 Lo+ 9>3
41 10 2 2 72 20 16w 16
—— = — L+ - L2+ —— - ——Ls| L],
+(27 g hetgls 9>+<3+ 3 3 )“
1 5 2um 2L L? 7 2 L2 x?
FD1 = ¢ — 22t s _ s 0 )g Z_ s T ) g2 34
20 (¢ 5¢ 72173 3 3 9)°"\373 79 (34)

5 Ly L?> nx? 5 4
ok I T e T
+<6 3 3 9)3+ g

As stated before, the pure Mellin-Barnes approach yields the same result.

3.4.4 Diagrams 3.1d)
In the case of diagrams 3.1d), neither of the two methods used to evaluate diagrams 3.1c)

has been crowned with success so far. From my point of view, the most promising approach
is nevertheless shifting the space-time dimension and subsequent application of recurrence
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relations. We therefore comment in a few words on the present stage of the corresponding
calculation.

After reducing the tensor integrals to scalar ones, we are left with integrals ]515532,,3,,4,,5, for
which the same recurrence relation as for F,£132V3,,4V5 holds [cf Eq. (14)]. The problem can

thus be reduced to the two integrals FO 9 and F\9

Vavsavs iovsvavs- Lhe first one is readily solved

in the same way as FO( and F" whereas the second one has not been cracked

Vo345 v10v3vavs
up to now.
To illustrate the difficulties, we explicitly consider the integral

~ 1 ~(d=4—2¢) 1 / dy d !
F = — = ——— [dld .
011 = oaya fio (dn2)d "R (+r)2(— g2 [(r+p)?—ml]

It is more promising to perform the integration over r before the integration over [. This
way it is straightforward to find

1

~ T'(e w (1 —u)" (1 —x)17¢(1 —y)°
Fipi1 = —(47r()4)2€ /dxdydu ( ) <A2€ ) ( y) )
0

where

A =m0 - Ty )

We may use again a Mellin-Barnes representation for A=2¢ with the hope of finding a
natural expansion in terms of § = ¢?/m?. We get

—z7rt
F10111 = ——/dt/da:dydu 4 26 €§t

X the(1—u) (1 —a) Ty (1 — ) (1 —wy) 2D (—t) T(t + 2e).

The integration over the Feynman parameter x yields Euler I' functions. However, the
term (1 — uy)~ 2 complicates the evaluation of the y and u integrals. Performing the
integral over u brings in the hypergeometric function

1+t4+e t+2¢€
2H1( 94t

) :iF(l~|—t+e+n)F(t+26—|—n)F(2+t) Y

 T(l+t+el(t+2I'(2+t+n) I'(n+1)

It is now possible to do the remaining Feynman parameter integral over y and to perform
the sum over n. This yields

7 1 / dtem™t T(=)T(A+tT(—t—e)T(1+t+e)T(t+2¢)T(1—¢)
10111 — —

(dmyiz™ 7 A+0T(2+t—¢)
1> |
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Of course one is now tempted to express the hypergeometric function as an infinite sum,
to close the integration contour in the right half-plane, to calculate the residues that
contribute to the desired orders in § and afterwards to calculate the infinite sum again.
However, there is a problem with the above hypergeometric function, viz it is only defined
for

Re[(2+t)+ (2+t—€)—(1+t)— (1+t+€) — (t+2€)] =Re(2 —t —4e) > 0.

From this it becomes evident that we will run into difficulties when closing the integration
path in the right half-plane. Indeed, naively summing up all residues contributing at O (5™)
(m = 2,3,4,...) yields divergent results. At the moment I see two ways out:

e Close the integration contour in the left half-plane. This is certainly allowed, but
results in an expansion in 1/5. In other words, this requires to take into account all
residues lying on the left side of v what, let it be noted, yields the exact result, which
we may then expand in terms of s.

e Introduce an additional regulator, ie replace fol dy by folfew dy. This yields a hyper-
geometric function with argument 1 — €y instead of 1. We may not, however, expect
the integral over the semi-circle, introduced to close the integration contour, to be
harmless.

To follow up these ideas requires some more time because they comprise additional technical
difficulties. I have also tried to find other recurrence relations and applied Mellin-Barnes
representations in other ways, however without being rewarded. We stress that the integrals

fyf%wm% are the missing puzzle to complete the NNLL calculation of the process b —

drte.

3.4.5 Diagrams 3.1e)

The diagrams in 3.1e) finally, may again be solved in two ways. The first way is to use the
heavy external momentum expansion technique [7]. The second possibility is to apply the
dimension-shifting-and-integration-by-parts procedure also for this diagram. The structure
of the integral is of propagator type, ie depends only on one external momentum. Hence,
we might even use the algorithm presented in [6] to boil the problem down to two essentially
two-loop and two essentially one-loop integrals in the generic dimension. It is, however, not
necessary to reduce the problem that far because the integrals get solvable immediately
after applying a first recurrence relation. We do without presenting the calculation of
diagram 3.1e) and merely give the results for the form factors.

2 (1 19  dir 4 16
FO% =2 (=+4L i A e 35

®
o
I
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3.5 O(a;) Counterterms to O} and O3

So far, we have calculated the two-loop matrix elements (d¢T¢7|C; Of|b) (i = 1,2; ¢ =
u,d). As the operators mix under renormalization, there are additional contributions
proportional to C;. These counterterms arise from the matrix elements of the operators

2 10 12
> 0Z(0F + 05+ 6Z;0;,+ Y 6Z;(04 +05), i=1,2, (36)
j=1 j=3 J=11

u,c

where the operators O;— Oy are given in Eq. (1). O};° and O3 are evanescent operators,
ie operators which vanish in d = 4 dimensions. In principle, there is some freedom in the
choice of the evanescent operators. However, as we want to combine our matrix elements
with the Wilson coefficients calculated by Bobeth et al. [10], we have to use the same
definitions:

b= (deynye T ur) (apy*y"y7T%;) — 16 OF

12 = (CZL%%%UL) (TLLVMVVV%L) — 16 Oy, (37)
0 = (deynwreT L) ey T;) — 16 05,

01, = (JLW%%CL) (e "~v7br) — 16 O5 .

The operator renormalization constants Z;; = d;; + 6Z;; are of the form

s 1 2 1 1
52, = (ag; ¥ Ean) . (ag? P lag g agf) o0, ()

A7 g (47)?

The coeflicients agf‘ needed for our calculation we take from Refs. [1, 10] and list them for
t1=1,2and j=1,...,12:

—2
' = : (39)

[SVITSN
o
|
o
o
o
o
|

[
o
e
I

12 __ 58 12 64 22 _ 1168
17 = —243> Q19 = “7395 19 = 43>
(40)
12 _ 116 12 _ 776 22 _ 148
Ay7 = g1 > A29 = 943 » A9 = gy -

We denote the counterterm contributions to b — d¢*¢~ which are due to the mixing of
Ot or OY into four-quark operators by F;ZQMHMk and F:Z@muark They can be extracted
from the equation

Qg 1 1 u Qg C ~ C A
> (—) - at (d | OY ) 100p = — ( ) [ F, OV iee + FA), 0 e

47 A
J

(41)
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where j runs over the four-quark operators. As certain entries of a'! are zero, only the
one-loop matrix elements of O}, O3, Oy, Of;° and O3 are needed. In order to keep
the presentation transparent, we relegate their explicit form to Appendix A. We do not

repeat the renormalization of the Of and O§ contributions in this place and refer to [1].

The counterterms which are related to the mixing of O} (i = 1,2) into Oy can be split into
two classes: The first class consists of the one-loop mixing O} — Oy, followed by taking
the one-loop corrected matrix element of Og. It is obvious that this class contributes to the
renormalization of diagram 3.1f), which we take into account when discussing the virtual
corrections to Oy. We proceed in the same way with the counterterm just mentioned.

There is a second class of counterterm contributions due to O} — Oy mixing. These
contributions are generated by two-loop mixing of OY into Oy as well as by one-loop
mixing and one-loop renormalization of the g, factor in the definition of the operator Oq.

We denote the corresponding contribution to the counterterm form factors by E‘fz(i)g and
ﬂfz(i)g. We obtain
22 12 11
ct(9) @ig | g aig Po ct(7)
Fiute=— (6—2 + ?> a2 Fi 2o =0, (42)
where we used the renormalization constant Z,, given by
(07 60 1 2
Z,, =1——=—-= =11-=-N Ny =05. 43
gs 47T 2 € Y ﬁo 3 f’ f ( )

Besides the contribution from operator mixing, there are ordinary QCD counterterms.

The total counterterms Fif,z(j) (t=1,2; j = 7,9), which renormalize diagrams 3.1a)-3.1e),
are given by

ct(j ct(j ct(j
Fi,u(J) = Fi,u(J—)>4quark + Fi,u(L)Q‘ (44)
Explicitly they read
ct(9 9 8 . ~ ~
= - FY - Seags (2870 — 63007° — 420im + 1265 — 5°]
8

+ ——— [-420 + 2394047 + 2525 + 278° + 45°| L, (45)
25515
136 16 544 512

— —— L? 4+ | ==(-2—-5Ti —L,| Ly — —L*
st et gl im) + 5 b 81w

. 2 R
i = — F{D) i+ gz (8401, + 7054787+ 57).
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ct(9 9 4
Fi = — F®) o+ o o5 (99570 — 63007 — 34440im + 1265 — ]
68 8 256 256
— 2 1 — L,|L,— == L? 4
Togg b T g (100 5TIm) = Ss b Be = s L (46)

c 1
FO— - S (840 L, + 705 + 75 + 5°) .

The quantities Fw giv (0=1,2; j =7,9) will compensate the divergent parts of the form
factors associated with the virtual corrections to Of , once this calculation is completed.
They are given by

9 128 n 2
2wdiv 8162 T 2835€

16
(20790 — 23940 im — 2528 — 27§ — 48] + 8T(32 L,—17Ly),
€

m 92
2u,div Sle )

(47)
©) 64 8
Ludiv = "5133 ~ TeEIE € 71820 — 23940 im — 2525 — 27 8% — &%) — %(SQL 17Ly),
o 46
lu,div — 2436 .

As mentioned before, we will take diagram 3.1f) into account only in Section 4. The same
holds for the counterterms associated with the b and s quark wave function renormalization
and, as stated earlier in this subsection, the O(ay) correction to the matrix element of
0Z;909. The sum of these contributions is

Qs Qg

5Zw<0 >1 loop T =— A

[6Z4(Og)tree + (Og)1100p) s 62y = \/Zw(mb)Zw(ms) -1,

and provides the counterterm that renormalizes diagram 3.1f). We use on-shell renormal-
ization for the external b and s quark. In this scheme the field strength renormalization
constants are given by

Zw(m):1—j—;§ (%)2 (1+3+4). (48)

€ €IR

€

So far, we have discussed the counterterms which renormalize the O(a;) corrected matrix
elements (d(T¢~|0;)b) (i = 1,2). The corresponding one-loop matrix elements [of O(a?)]
are renormalized by adding the counterterms

a, a”

<09>tree .

47T€
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4 Virtual Corrections to the Matrix Elements of the
Operators O7, Og, Oy and O

The virtual corrections to the matrix elements of O7, Og, Og and O1¢ and their renor-
malization is discussed in [1, 11]. For completeness we list the results of the renormalized
matrix elements. They may all be decomposed according to

Qs

(dTL|C;040b) = 51'(0) <_E> [ <O9>tree + F <O7>tree]>

where
~ «
0;=220,
4

C(O) C )’ C(O) Cél :

~(0 4 0 Qs (0 (0 1
cghiz(@)+4#$§ and CQ) =),

Renormalized matrix element of O

The renormalized corrections to the form factors F7(9) and F7(7) are given by

16 1. 1 1
po _ 00 T T 1 49
7 3 ( torg s I8, (49)
; 32 32 128
F7 = 5 Lot +85+685 +75 + fnt - (50)

The function fi,¢ collects the infrared- and collinear singular part:

2e 2e
Li| M
[mb 8 1, 1 [mb} 1 2 2,
= ———1(1 — — | -1 — -1 , 51
fint o 3( +s+23 +38)+ 3 n(r)+3n(7“) 3n(r) (51)

where e and r = (m?/m?) regularize the infrared- and collinear singularities.

Renormalized matrix element of the operator Og

The renormalized corrections to form factors of the matrix element of Og are

104 32 1184 40 14212 32
F(g) - -~ 2 oo - 2 A o - = 2 A2 52
A 9 o T+ ™ s+ 135 3 v (52)

— =)@+ — L, (1+54+5+35),

193444 560 16
945 27 9
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7 32 8 44 8 . 4 40\ 32 316\ .
Fg():——LM+2—77T2—§—§Z7T+ §772—§ S+ 371'2—7 82 (53)

200 658 8
+(§W2—?)§3—§L5(§+§2+§3)

Renormalized matrix element of Og and O

The renormalized matrix element of Og and Oy, finally, is described by the form factors

1620, 16, 116

7 20, 16 - 54

9 3—|—33+35+278+ff, (54)
- 92 1 1.

F§>:_§s(1+§s+§32), (55)

Ry =Fy, (56)

Ry = Fy", (57)

where fi,r is defined in Eq. (51).

The renormalized diagrams 3.1e) are properly included by modifying 59(0) as follows:

1
At

~ ~ 4
Céo) . C’éo’mOd) _ Oéo) (02(0) + 3 C£0)> ()\uHo(O) + )\CHO(z)).

For § <4z (2 =m?/m?) the loop function Hy(z) can be expanded in terms of 5/(4 z). We
give the expansion of Hy(z) for this case as well as the result for Hy(0):

1 . N L
Ho(2) = 5o [—1260 + 2520 1n<mi) +1008 (4%) 4439 (4%) + 956 (i) ] |

(58)
8 4 .. 4.
H()(O) = ? — § hl(S) + §Z7T.

5 Corrections to the Decay Width B — X 414~

In this section we first discuss the contribution of the virtual corrections to the decay
width dI'(B — Xy ¢7¢7)/ds. Following [1, 11], we do also include those bremsstrahlung
corrections needed to cancel the infrared- and collinear singularities. We then discuss in a
second step the remaining bremsstrahlung contributions.
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5.1 Virtual Corrections

In the literature (see eg [12]), the decay width is usually written as

dr'(b — Xa0t07) <aem>2 GF M poie IA'*'2( —5)°
ds 4 48 73
_ 2
X {(1+2§) (‘cgff )+4(1+2/§)

2 ~ ~
+|Cit Cen

" {12Re (5;/‘*535*) } . (59)

All corrections have been absorbed into the effective Wilson coefficients 5"73H, 5§H and 5{’g .
We follow [1, 11, 12] and write the effective Wilson coeflicients as

~ A A
et = <1 n asiu)wg(g)) (Ag — )\—CT9 h(z,38) — )\—“T9 h(0,3) + Uy h(1, 8) + Wo h(0, 3))
t t

s /\U )\c
# 40 (Ge (0m PR 3 (PR + R + A0 )

4 /\t v )\t
ceft = (1 + 0‘575“) w7(§)) Ay (60)
s Au A
4 2 (X (O RD L oD + 22 (CORD + 0 D) + AR
47 )\t >\t

6?(? = <]. + @Wg(g)) A107

where we have provided the necessary modification to account for the CKM structure of
b — d¢*¢~. The form factors Fl(z;g) and Fl(z;g) are given by

) = Fla) + FO) )+ FO)le + FO)d) + F)le] + FLY), where = 1,2 j=1,9.
(61)

At the present time, the contributions Fl(i) [d] are not yet available.

The form factors Fl(fc’g), FQ(L’g) and F8(7’9) can be seen in [1, 11]. The functions w;(§) and wy($)
encapsulate the interference between the tree-level and the one-loop matrix elements of Oy
and Og 1o and the corresponding bremsstrahlung corrections, which cancel the infrared-
and collinear divergences appearing in the virtual corrections. When calculating the decay
width (59), we retain only terms linear in «, (and thus in w7, wg) in the expressions for

|Ceft|2 | CefT|2 and |CeF|2. Accordingly, we drop terms of O(a2) in the interference term
Re <5$H5’§H*) too, where by construction one has to make the replacements wg — wrg

and w; — wrg in this term. The function wg has already been calculated in [12], where
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also the exact expression for h(s, z) can be found. For the functions w; and wrg and more
information on the cancellation of infrared- and collinear divergences we refer to [1].

The auxiliary quantities Ay, Ag, A1g, Ty, Uy and Wy are the following linear combinations
of the Wilson coefficients C;(p):

Ar = 25 Cr(1) = 5 Cal) — 5 Calw) = 5 Coli) = - o).
A = 2 (1) + Cli) = 5 o) +20Csl) =5 )
Ay = 05 o) + 5 Cal) + 5 Cole >+%cﬁ< )
Auj;c (1) + Cal) 149 ) + Z Cilp) 7 ] (Tj’) ,
Ty = (% Ci(p) + C2(/~L)> +6 C5(p) + 60 Cs(p),
Uy = — ;Cz(u) - 204(/0 —38C5(p) — % Co(p),
Wo = = 3 Cul) = 5 Ca1) = 8 Co(p) — 5 Co(1)

By this definition we do also include some diagrams induced by Os 45 ¢ insertions, viz the
O(a?) contributions, the diagrams of topology 3.1e) and those bremsstrahlung diagrams

where the gluon is emitted from the b or d quark line (cf [13]).

We take the numerical values for A;, Ag, Ayo, Ty, Uy and Wy from [12], while C’l(o) and Céo)
can be found in [9]. For completeness we list them in Table 5.1.

5.2 Bremsstrahlung Corrections

The bremsstrahlung contributions taken into account by introducing the functions w;(s)
cancel the infrared divergences associated with the virtual corrections. All other brems-
strahlung terms are finite. This allows us to perform their calculation directly in d = 4
dimensions.

The sum of the bremsstrahlung contributions from O; — Og and Og — Og interference terms
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=25 GeV nw=>5GeV nw=10 GeV
s 0.267 0.215 0.180
c© —0.697 —0.487 —0.326
¥ 1.046 1.024 1.011
(AP AM) (—0.360, 0.031) (—0.321, 0.019) (—0.287, 0.008)
AQ) —0.164 —0.148 —0.134
(A, A1) (4.241, — 0.170) (4.129, 0.013) (4.131, 0.155)
(7O, ) (0.115, 0.278) (0.374, 0.251) (0.576, 0.231)
(U, u) (0.045, 0.023) (0.032, 0.016) (0.022, 0.011)
(W, wh) (0.044, 0.016) (0.032, 0.012) (0.022, 0.009)
(A9 A%) (—4.372, 0.135) (—4.372, 0.135) (—4.372, 0.135)

Table 5.1: Coefficients appearing in Eq. (62) for p = 2.5 GeV, u =5 GeV and p = 10 GeV.
For av, (1) (in the MS scheme) we used the two-loop expression with 5 flavors and a,(my) =
0.119. The entries correspond to the pole top quark mass m; = 174 GeV. The superscript
(0) refers to lowest order quantities and while the superscript (1) denotes the correction
terms of order a.

and the Og — Og term can be written as

Brems,A brems brems brems
dr _dry drey dre:

ds ds ds ds
Qem \2 [ Qs mj, oe|)\t‘2CJ2
< e ) (H) b,p 1118 . LI (2 Re [c7s T7s + €89 Tso] + Css ng), (63)
where

g = Clp - 5§O,eff)58(0,eff)*’ cso = Cp - ég(o,eff)’cv,éo,eff)*7 cas = Cp - ‘5§0,eﬁ) (64)

}2
For the quantities 77s, g9 and 7gg we refer to [13].

The remaining bremsstrahlung contributions all involve the diagrams with an Of, or Of,
insertion where the gluon is emitted from the u or ¢ quark loop, respectively. The cor-
responding bremsstrahlung matrix elements depend on AiS?, Al only. In d = 4
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dimensions we find

~ (u ! zy (1 —y)? ~ (e y(1—y)?
Alé3):8(Q‘r)/d$dQ%, Algg)IS(Q'T)/O dxdyw,
AU -y ~ ! y(1— 1)
a0 =sen) [ara 0 A =s(n) [aray U
where
CW = —2zy(1-y)gr)—dy(1—y)—if,

CO=m2-2zy(1-y)(gr) -yl —y)—id.

The analytical expressions for Az’é? and Az;? can be expressed in terms of functions G;(t):

NGO A D _Sa (3 L ia (v

st oae () o) Jo) o) w

— (e s w

Aif) =2 {Go (;) - Go(;)] : (66)
(

where z = m?/m?. G(t) (k > —1) is defined through the integral

/dmx In[l —tx(l —x) —id], Gl(t):%Go(t).

Explicitly, the functions G_;(¢) and Go(t) read

2ﬂarctan<,/%)_772_2_2arctan2< %» f <4

G_i(t) = , (67)
—2im (VD) - 2o m? (V) i

(7”/%—2—2@/% arctan(,/%)), t<4

Go(t) = : (68)
iy 242 /S (LT s

The quantities Az'gu) we obtain from Az’? in the limit z — 0:

~

Aily) = -2 4

- [ln(w) - ln(§)] ,

w— S

Al = —2[In(w) — In(3)].
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Following [13] we write

| 2

2 5
dFBrems,B B (aem)Q ( Qg ) GF mb,pole |/\t

ds 4n) \4n 48 73
1

/dw {(011 + c12 + Ca2) o2 + 2Re[ (c17 + car) Tor + (c18 + ca8) Tos + (19 + €29) 729] }, (69)

5
In terms of the quantities A and AdSE, defined by

Ac

A e )\u A -(u A -lc

Adg; =~ /\_tAlg?;) - )\_tAlg:&)a (70)

A )\’lL A -(u )\C A -lc

A= = ZE A — Ze NG, (71)
A\ \

the quantities 7;; introduced in Eq.(69) read

A1 — a2 _
7—22:§(w S) 1 w) > {|:3w2+2§2<2+w>_§w(5—2w):| |Algg‘2+

[2 22+ w) +sw(l+ 2w)] Ak + 4§[w (1—w)—3(2+ w)} ‘Re [mggmgf;*]},
(72)

T27:§$ « {[(1—w) (48— Sw+w?) + 3w (4 -+ § — w) Inw)| Adg]

. [4§2<1 —w)+ w4+ 3 —w) 1n<w)]mgf7f}, (73)
o = gﬁ . {[m (28— w)(1 - w) A~ [28 (w— 87(1 — w)] Aig]
+§w[(1+2§—2w)mg§f—2(1+§—w)m3§].1n{(1+§_w)(j2+§(1_w»]}, (74)

4 1 N A ~ A €
T = g X {[2 $(1 —w)(8+ w) —|—43w1n(w)] Aigi—

[2 (1 — w) (5 + w) + w(3§ +w) ln(w)] Aigf;}. (75)
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6. Outlook

The coefficients ¢;; include the dependence on the Wilson coefficients and the color factors.

2

e =0 - ’CF)) ) crr =Ch, - C'fo)(jéo’eﬁ)*, cor =Cp - 050)550,9,&)*’

Cig2 = CTQ -2Re [CfO)CQ(O)*} s C18 — CTQ . Ofﬂ)aéo,eff)*, Cog — OF . Céo)ég(ﬂ,eff)*’ (76)

2

2 =Cp - ‘Céo) ) ci9 =Cr, - Cfo)(j’éo’eﬁ)*, Co9g =Cp - Céo)ééo’eﬁ)*-

The color factors Cr, C;, and C,, arise from the following color structures:

;T“T“:Cpl, CF:]\;3];617
> TUTTT'TT = Cp1, Cyy = N -1 ,
abe ' O8N
and N2 1
Z T = L1, O, = — 40 A

a,b

6 Outlook

We will have to take care of the calculation of diagram 3.1d) first, of course. In addition,
we will also be forced to think about how to account for the large resonant contributions
due to uu intermediate states. As stated before, the process b — d ¢/~ is sensitive to CP
violation. We are most eager to get predictions for the CP asymmetry

I'(B— X 0t07) =T (B — Xylt(7)
I'(B— Xglt0)+T (B— Xglt(-) "

There is also the hope that we might have learnt something which will turn out to be
helpful in the analysis of b — s/¢T¢~ for high values of 5. To be precise, at least the
diagram 3.1e) with a ¢ quark running in the fermion loop can be calculated by means of
dimension shifts and recurrence relations — also for values of § > 4 z.
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A One-Loop Matrix Elements of the Four-Quark Op-
erators

ct(7,9)

In order to fix the counterterms F "¢ . (1 = 1,2) in Eq. (41), we need the one-loop

matrix elements (d(T07|O0;]b)1100p of the four-quark operators O}, OY, Oy4, O}, and OfY,.
Due to the 1/e factor in Eq. (41) they are needed up to O (e'). The explicit results (in
expanded form) read

2e
- |ow _ (- L PR
(d 0 |051b)1:100p = <mc) {9e+27[2 3 3L8}+

8—61 [52 — 2441 — 21 7% — (24 — 364m) Ly + 18 L2 }} (Og)tree
4
(d 707107 [D) 1100p = 5 (d L7710 [b) 11c0p -

2e
4 ~
(A0 |Oulb) 1100y = — ( F ) { {— +—— (105 + 78+ 33)] (07 tree

my 9 " 945
0, 2 (—420 + 1260 im — 1260 L, + 2528 + 27 8% + 4 5%)
27¢ = 8505 ’
4
+ oror (4200w + 910 — 630 Ly im — 420 L, — 3157

+ 315 L2 — 1265 + §°)

} <69>treea

64 2e 5 - .
<d€+€7‘01f1’b>1_100p = — 2—7 (mib) (1 + g €+ 1me+ Ls) <09>tree )

S 3 -1 0u
(dere |O15/0) 1-100p 3 (dere |OF1[6) 1-100p -
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