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Why we concentrate on semileptonic decays in this thesis:

“If you drink the non-leptonic tonic, your
physics career will be ruined and you will end

up face down in the gutter.”

M. Wise in advice to theorists





Abstract

In this PhD thesis we present the calculation of the O(αs) QCD cor-
rections to the semileptonic inclusive rare decays B → Xs `

+`− and
B → Xd `

+`− (` = e, µ) in the Standard Model. Rare decays are of great
interest for mainly two reasons. First, they provide sensitive checks on
the Standard Model and allow to retrieve valuable information on the
Cabibbo-Kobayashi-Maskawa matrix elements Vts and Vtd, which cannot
be measured directly. Secondly, there is the chance that particles present
in extensions of the Standard Model contribute considerably to physical
observables measured in rare B decays. Of special interest in this context
are additional sources of CP violation. Inclusive decays are exception-
ally suited for a theoretical analysis as they are well approximated by
the underlying partonic transitions. The main achievement of this work
is the calculation of the virtual O(αs) corrections to the quark transition
b → s `+`− and the corresponding gluon bremsstrahlung contributions.
The result of our calculation drastically reduces the renormalization scale
dependence. The calculation of the QCD corrections to b → d `+`− is
not yet fully accomplished, but we expect to finalize it within a few
weeks. Our work on b → s `+`− has already been applied by several
authors, mainly in studies on exclusive rare decays like B → Ke+e−,
B → K∗e+e− and on extensions of the Standard Model.





Contents

Contents

Introduction 1

I Preliminaries 11

1 The Standard Model 13

1.1 Symmetries and Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Symmetry Breaking and the Generation of Masses . . . . . . . . . . . . . . 17

1.4 The CKM Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Effective Hamiltonian 22

3 Heavy Quark Effective Theory 25

4 Inclusive Semileptonic Decays 27

5 Matching Calculation for O1 and O2 and Operator Mixing 29

5.1 Calculation of the Amplitude in the Full Theory . . . . . . . . . . . . . . . 30

5.2 Calculation of the Amplitude in the Effective Theory . . . . . . . . . . . . 30

5.3 Operator Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4 Wilson Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Renormalization Group Equation 33

6.1 Renormalization of QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2 RGE for the Wilson Coefficients . . . . . . . . . . . . . . . . . . . . . . . . 34

6.3 Renormalization of Composite Operators . . . . . . . . . . . . . . . . . . . 37

7 LL, NLL and NNLL Contributions to b → s `+`− 39

i



II Physics Letters B 507 (2001) 162 45

“Two-loop Virtual Corrections to B → Xs `+`−

in the Standard Model”

1 Introduction 48

2 Theoretical Framework 49

3 Virtual Corrections to O1, O2, O7, O8 and O9 51

3.1 Virtual Corrections to O1 and O2 . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Virtual Corrections to the Matrix Elements of O7, O8 and O9 . . . . . . . . 53

4 Bremsstrahlung Corrections 57

5 Corrections to the Decay Width 58

6 Numerical Results 60

III Physical Review D 65 (2002) 074004 65

“Calculation of Two-Loop Virtual Corrections
to b → s `+`− in the Standard Model”

1 Introduction 68

2 Effective Hamiltonian 69

3 Virtual O(αs) Corrections to O1 and O2 71

3.1 Regularized O(αs) Contribution of O1 and O2 . . . . . . . . . . . . . . . . 72

3.1.1 The Building Blocks Iβ and Jαβ . . . . . . . . . . . . . . . . . . . . 73

3.1.2 General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.1.3 Calculation of Diagram 3.1b) . . . . . . . . . . . . . . . . . . . . . 76

3.1.4 Calculation of Diagram 3.1a) . . . . . . . . . . . . . . . . . . . . . 79

3.1.5 Calculation of Diagrams 3.1c) . . . . . . . . . . . . . . . . . . . . . 80

3.1.6 Calculation of Diagrams 3.1d) . . . . . . . . . . . . . . . . . . . . . 81

3.1.7 Calculation of Diagram 3.1e) . . . . . . . . . . . . . . . . . . . . . . 82

ii



Contents

3.1.8 Unrenormalized Form Factors of O1 and O2 . . . . . . . . . . . . . 83

3.2 O(αs) Counterterms to O1 and O2 . . . . . . . . . . . . . . . . . . . . . . . 84

3.3 Renormalized Form Factors of O1 and O2 . . . . . . . . . . . . . . . . . . . 88

4 Virtual Corrections to O7, O8, O9 and O10 90

4.1 Virtual Corrections to the Matrix Element of O9 and O10 . . . . . . . . . . 90

4.2 Virtual Corrections to the Matrix Element of O7 . . . . . . . . . . . . . . . 92

4.3 Virtual Corrections to the Matrix Element of O8 . . . . . . . . . . . . . . . 93

5 Bremsstrahlung Corrections 93

6 Corrections to the Decay Width for B → Xs `+`− 97

7 Numerical Results for Rquark(ŝ) 99
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Introduction

Introduction

First evidence for the existence of the bottom quark (b quark) was found at Fermilab in
1977 [1]. During the last twenty-five years, many experiments have been conducted to
study B physics, the physics and phenomenology of B mesons. Many experiments are still
running, others are planned and expected to supply new data within the next few years.
Besides the experimental work, also the theoretical framework appropriate for studies on
B decays has been developed. A very comprehensive review, mainly on the experimental
aspects of B physics at BABAR, is given in “The BABAR Physics Book” [2]. A very thorough
introduction to the theoretical side can be found eg in [3].

It stands out of question that the Standard Model has proved to be extraordinarily suc-
cessful so far. However, most likely it won’t be the end of the story. There are many open
questions concerning the Standard Model itself, as eg the origin of the mass hierarchy,
as well as observations not explained by the Standard Model1. The most serious reason
not to trust absolutely in the Standard Model is maybe the fact that it does not provide
enough sources of CP violation to explain the baryogenesis2. The only source of CP viola-
tion within the Standard Model is the complex phase of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix3. Possible extensions of the Standard Model are eg Supersymmetry (SUSY)
or Grand Unified Theories (GUT), to mention only the most popular ones. Evidently, the
energy scales required to produce the corresponding particles directly are out of reach of
today’s accelerators. (This may change, once LHC [5] becomes operational.) But even
without having next-generation accelerators at hand, our search for “New Physics” is not
doomed to fail. Our hope is in observing small deviations from the Standard Model that
reveal themselves in processes feasible by today’s experiments. Rare, loop-induced decays
might have some of the Standard Model particles in the loop replaced by Supersymmetric
particles, for instance. These additional contributions could have a substantial effect on
decay rates and other observables. An example for a “New Physics” contribution is shown
in Fig. 1. On the other hand, precise measurement of physical quantities combined with
their reliable prediction allows to put stringent constraints on certain extensions of the
Standard Model. See eg Ref. [6]. Experiments running at B factories also allow to extract
more precise information on the elements of the CKM matrix. The aim is to measure

1The Standard Model does, for example, not account for neutrino masses, which today stand more or
less out of question.

2There are many cosmological models where the baryon number asymmetry[
nB/nγ = (5.5± 0.5)× 10−10

]
(see eg Ref. [4]) is generated at the weak phase transition. They all

require additional sources of CP violation.
3This is not quite true; non-perturbative QCD effects induce an additional, CP violating term to the

Standard Model Lagrangian: Lθ = θQCD
32 π2 εµνρσFµνaF ρσa. The experimental bounds on the electric dipole

moment of the neutron imply θQCD ≤ 10−10, which is unnaturally small. This puzzle, ie the smallness of
θQCD, is called the strong CP problem.
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Figure 1: a) A Standard Model penguin diagram for the transition b→ sγ. b) Feynman
diagram for the same process b → sγ, where the W boson and the t quark have been
replaced by a t squark and a chargino, respectively.

enough quantities to impose redundant constraints on Standard Model parameters. These
constraints will either allow to fully determine the CKM parameters or they will force one
to go beyond the Standard Model – equipped with some hints which direction to follow,
however. Of particular interest are possible inconsistencies among different parameters
describing the unitary triangle (VudV

∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0). CP violation has first been

observed in K decays [7]. A multitude of CP violating effects are expected in B decays,
and almost any extension of the Standard Model generates additional CP violation.

In the past ten years, great progress has been made in B physics, not only on the theoretical
side but also on the experimental one. The most important experiments are

• CLEO (@CESR; Ithaca, NY) [8]
e+e− → Υ(4S) → BB̄
The detectors CLEO II, CLEO II.V and CLEO III have collected about 17.1×106 BB̄
data samples at the Υ(4S) resonance. The resonance Υ(4S) (10.58 GeV) is the first
bb̄ bound state heavy enough to decay into a pair of B mesons. Recently, about
9.6 × 106 BB̄ events have been analyzed in the search for lepton-flavor-violating
processes as, for example, B → K− e±µ∓ or B+ → K− e+e+ with a resulting upper
limit for the corresponding branching fractions of about a few 10−6 [9].

• BELLE (@KEK-B; Tsukuba, Japan) [10]
e+e− → Υ(4S) → BB̄
BELLE is running since February 2000. The integrated luminosity up to now is
about 70 fb−1, which corresponds to 73× 106 BB̄ events. Recent BELLE results are
eg the observation of mixing-induced CP violation in the neutral B meson system
and the corresponding measurement of the CP violation parameter sin(2β) [11], or
the measurement of the exclusive semileptonic decay modes B → K e+e− and B →
K µ+µ− [12]. Anybody interested in BELLE results should bare in mind the different
notation used at BELLE to name the angles of the unitarity triangle, ie α ≡ φ2,
β ≡ φ1 and γ ≡ φ3.

2
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• BABAR (@PEP-II, SLAC; Stanford, CA) [13]
e+e− → Υ(4S) → BB̄
BABAR

4 had its first event on May 26, 1998. The integrated luminosity has a cur-
rent value of about 81 fb−1 corresponding to 84.5 × 106 BB̄ pairs. Both BELLE
and BABAR work at asymmetric e+e− colliders with beams tuned on the Υ(4S) reso-
nance. Υ(4S) → BB̄ results in B mesons almost at rest in the center of mass frame.
The asymmetric mode allows to produce B mesons with significant momenta in the
laboratory frame. This enables to infer the B mesons’ decay times from their decay
length. However, the required vertex resolution is of O(100µm), which is a demand-
ing task for experimentalists. A recent BABAR result is an improved measurement of
the CP violating asymmetry amplitude, which is proportional to sin(2β) [14].

• HERA-B (@HERA p, DESY; Hamburg, Germany) [15]
pA→ bb̄X
HERA-B is a fixed target experiment at the 920 GeV HERA proton beam at DESY.
For the measurement of the bb̄ production in proton-nucleus interactions HERA-B
uses inclusive B → J/Ψ + X decays. The number of reconstructed B → J/Ψ + X
candidates in the year 2000 sample is small [O(10)], reflecting the low efficiency of the
not-fully commissioned detector and trigger. Up to now, HERA-B has not fulfilled
the expectations. The poor efficiency does not allow to compete in CP violation
measurements. However, HERA-B is the first experiment running in a LHC like
environment and many useful experiences for future B factories have been made.

• LHCb (@LHC, CERN; Geneva, Switzerland) [16]
pp→ bb̄X
LHC is supposed to become operational in 2006. It is expected to produce about
5× 1011 – 5× 1012 BB̄ samples per year at

√
s = 14 TeV. This has to be compared

to the O(107) events per year at the present Υ(4S) B factories. The new machine
will provide very good statistics for Bd and Bs processes, the latter not accessible
through the Υ(4S) machines [17].

• BTeV (@Tevatron, Fermilab (FNAL); Batavia, IL) [18]
pp̄→ bb̄X
BTeV is, as LHCb, a second generation B factory. About 2 × 1011 BB̄ events per
year are expected. This experiment too, will allow for high precision measurements
of CP violation parameters in decays of B0, B±, Bs,... mesons and the search for
“New Physics” in rare and FCNC (flavor changing neutral current) decays. BTeV
is expected to become operational before LHCb. It is worth mentioning that both
LHCb and BTeV pose many requirements not only to the detectors themselves but
also to the data acquisition systems. B physics related experiments currently running
at Tevatron are CDF [19] and D0/ [20].

4BABAR is not only famous for producing many valuable experimental results: its collected data are
stored in the world’s largest database, which currently exceeds 500 TBytes of size!
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For completeness, we mention that already at LEP studies on B physics have been done
(ALEPH, DELPHI, L3, OPAL) (e+e− → Z0 → bb̄). BB̄ mixing was measured for the first
time with the ARGUS detector @DORIS (e+e− → Υ(4S) → BB̄) [21].

Recent experimental results related to the present work are the first measurements of
the exclusive semileptonic rare B decays B → K µ+µ− and B → K e+e−, reported by
the BELLE collaboration [12]. The result is based on a 29.1 fb−1 sample accumulated
at the Υ(4S) resonance. The branching fraction is obtained to be B(B → K `+`−) =(
0.75+0.25

−0.21 ± 0.09
)
× 10−6. In Ref. [6], where also our calculation on b → s `+`− entered,

the theoretical predictions for these branching fractions have been improved and compared
with experimental data. The results are found to be consistent with the Standard Model
and some Supersymmetric extensions. As what concerns the inclusive semileptonic decays
B → Xs e

+e− and B → Xs µ
+µ−, only upper bounds for the inclusive branching ration

are available today. These values too, may be found in [12]:

B(B → Xs e
+e−) ≤ 10.1× 10−6 at 90% C.L. ,

B(B → Xs µ
+µ−) ≤ 19.1× 10−6 at 90% C.L. .

Let us now turn to the theoretical side. Albeit CP violation will not be discussed further
in this thesis, it is worthwhile looking briefly at the three types of CP violation in meson
decays. This is, as should have become clear by now, because the main reason for doing
B physics is to put the Standard Model to the test and to look for “New Physics”, which
most likely will be accompanied by CP violating effects. The flavor and CP eigenstates
B0 = b̄d and B̄0 = bd̄, for example, obey

CP |B0〉 = ωB|B0〉, CP |B̄0〉 = ω∗B|B̄0〉, |ωB| = 1.

The light and heavy mass eigenstates are given by

|BL〉 = p|B0〉+ q|B̄0〉, |BH〉 = p|B0〉 − q|B̄0〉 with |q|2 + |p|2 = 1.

The time evolution of the flavor eigenstates is described by the Schrödinger-like equation

i
d

dt

(
B0

B̄0

)
=

(
M − i

2
Γ

)(
B0

B̄0

)
,

where M and Γ are Hermitian matrices. Fig. 2 shows the lowest order Feynman diagrams
that induce B0 − B̄0 mixing.

The three types of CP violation are

1. CP violation in mixing
Mixing arises because mass eigenstates need not to be CP eigenstates. For the neutral
B system, this effect can be observed through asymmetries in semileptonic decays:

asl =
Γ
(
B̄0

phys(t) → `+νX
)
− Γ

(
B0

phys(t) → `−ν̄X̄
)

Γ
(
B̄0

phys(t) → `+νX
)

+ Γ
(
B0

phys(t) → `−ν̄X̄
) .
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Figure 2: Leading order Feynman diagrams accounting for B0−B̄0 mixing in the Standard
Model.

CP violation in mixing has been observed in the neutral K system [Re(ε) 6= 0].

2. CP violation in decays
CP asymmetries in decays are often referred to as direct CP violation. Any CP
asymmetry in charged B decays,

af =
Γ(B+ → f+)− Γ(B− → f−)

Γ(B+ → f+) + Γ(B− → f−)
,

are purely an effect of CP violation in decay. Direct CP violation has been observed
in the neutral K system [Re(ε′) 6= 0)].

3. CP violation in the interference between decays with and without mixing
This effect is the result of interference between a direct decay amplitude and a first-
mix-then-decay path to the final state. For the neutral B system, the effect can be
observed by comparing decays into final CP eigenstates of a time-evolving neutral B
state that begins at time zero as B0 to those of the state that begins as B̄0:

afCP
=

Γ
(
B̄0

phys(t) → fCP

)
− Γ

(
B0

phys(t) → fCP

)
Γ
(
B̄0

phys(t) → fCP

)
+ Γ

(
B0

phys(t) → fCP

) .
Note that this asymmetry is time dependent. CP violation in the interference between
decays with and without mixing has been observed again in the neutral K system
[Im(ε′) 6= 0)] but also in the neutral B system (aΨKS

6= 0). Very recently, the BELLE
collaboration has reported finding CP violating asymmetries in B0 → π+π− decays
[22].

We have followed [2, 23] in this discussion.

Bottom quarks are bound by QCD into color neutral baryons. In order to probe the
Standard Model and to look for “New Physics” effects, we have to disentangle them from
non-perturbative QCD effects. For the non-perturbative analysis of QCD, the strong cou-
pling constant αs cannot serve as expansion parameter. One approach to non-perturbative
QCD are effective theories. They have shown to be very powerful methods. For processes

5



involving light quarks, ie u, d and s, Chiral Perturbation Theory (χPT) is a very success-
ful approach. It exploits the fact that mu,d,s are small compared to ΛQCD, the scale of
non-perturbative QCD. χPT is, however, not appropriate for the description of B and C
physics. Instead, we may use Heavy Quark Effective Theory (HQET) [24]. HQET is an
expansion in ΛQCD/mc,b where the lowest order term is given by the corresponding quark
level transition, which can be treated within ordinary perturbation theory. Both theories
are derived from formal limits of QCD, ie mu,d,s → 0 and mc,b →∞, respectively, in which
new and useful symmetries arise. Other methods, based directly on QCD, are lattice QCD
and QCD sum rules. Even with the approaches mentioned above, there remains a great
variety of problems which to address requires yet other, less predictive, ways. However,
for inclusive weak decays (where the problems discussed in this thesis belong to), some
exclusive semileptonic decays and some static properties, effective field theories lead to
theoretical predictions that are well controlled.

This thesis focuses only on the rare decays b → s `+`− and b → d `+`− in the Standard
Model. The basic achievement is the calculation of the O(αs) QCD corrections to the
inclusive semileptonic rare decay b → s `+`−. The new contributions reduce the renor-
malization scale dependence drastically by a factor of two. We have also completed the
calculation of the corresponding gluon bremsstrahlung corrections. The calculation of the
O(αs) QCD corrections to b → d `+`−, which was not part of the basic concept to this
thesis, is not yet fully accomplished. It will be interesting to complete this calculation,
especially because the process b → d `+`− is much more sensitive to CP violation than
the transition b→ s `+`−, where it is strongly Cabibbo-suppressed. In our calculation we
have therefore neglected the combination |VusV ∗

ub|. This is a save approximation, but at
the same time predicts vanishing CP violation in the corresponding process.

The thesis is organized as follows:

• PART I
In part I we give an introduction to the theoretical framework used to study inclusive
weak B meson decays.

• PART II
“Two-Loop Virtual Corrections to B → Xs `

+`− in the Standard Model”,
published in Phys. Lett. B 507 (2001) 162, (hep-ph/0103087).

This is a short letter in which we just present the results for the virtual corrections
to b → s `+`−. The main result is that our calculation reduces the dependence on
the renormalization scale by a factor of two.

• PART III
“Calculation of Two-Loop Virtual Corrections to b→ s `+`− in the Standard Model”,
published in Phys. Rev. D 65 (2002) 074004, (hep-ph/0109140).

Here we present in detail the calculation of the virtual corrections to b→ s `+`−. In
particular, we discuss the application of multiple Mellin-Barnes representations to

6

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB507%2C162
http://xxx.lanl.gov/abs/hep-ph/0103087
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD65%2C074004
http://xxx.lanl.gov/abs/hep-ph/0109140


Introduction

solve certain Feynman parameter integrals. We do also explain how to include those
bremsstrahlung corrections that are necessary to cancel the infrared and collinear
singularities present in the virtual corrections.

• PART IV
“Results of theO(αs) Two-Loop Virtual Corrections to B → Xs `

+`− in the Standard
Model”,
Talk given at HEP01 in Budapest, Hungary, July 2001; published in “Budapest 2001,
High energy physics” hep2001/091, (hep-ph/0110388).

For completeness, I have also included our contribution to the proceedings of the
“International Europhysics Conference on High-Energy Physics (HEP01), Budapest,
Hungary, 12-18 Jul 2001” where in a short talk our results on B → Xs `

+`− were
presented.

• PART V
“Complete Gluon Bremsstrahlung Corrections to the Process b→ s `+`−”,
accepted for publication in Phys. Rev. D, (hep-ph/0204341).

In the preceding three papers we have only included those bremsstrahlung corrections
that are necessary to cancel the infrared and collinear singularities present in the
virtual corrections. In this paper we revise the results obtained before and give all
bremsstrahlung corrections to b → s `+`−. The additional contributions change the
result only marginally. We further comment on the issue of the definition of mc, ie
the pole mass and the MS mass definition.

• PART VI
“Calculation of Two-Loop Virtual Corrections to b→ d `+`− in the Standard Model”.

The calculation of the process b → d `+`− is in some parts almost identical to that
of b → s `+`−. However, since the CKM structure no longer factorizes in good
approximation, we do also have to calculate diagrams where the massive c quark is
replaced by a massless u quark. This substantially complicates the calculation of
some diagrams in the sense that the techniques used in the previous work fail. We
present another approach, which unfortunately does not yet solve all problems. At
the present time there remains still one integral which resists our attempt to solve it.
In Part VI, we therefore give but what might serve as a draft of a next paper, which
we hope to finalize within a few weeks.

Our work on b→ s `+`− has already been applied by several authors, mainly in studies on
exclusive rare decays, as eg B → Ke+e−, B → K∗e+e− [6, 25], and on extensions of the
Standard Model [26]–[30].

7

http://xxx.lanl.gov/abs/hep-ph/0110388
http://xxx.lanl.gov/abs/hep-ph/0204341


References

[1] S. W. Herb et al., Phys. Rev. Lett. 39 (1977) 252.

[2] The BABAR Physics Book, SLAC-R-504.
http://www.slac.stanford.edu/BFROOT/www/doc/PhysBook/physBook.html

[3] A. J. Buras, hep-ph/9806471.

[4] A. G. Cohen, D. B. Kaplan and A. E. Nelson,
Ann. Rev. Nucl. Part. Sci. 43 (1993) 27, hep-ph/9302210;
S. Burles, K. M. Nollett and M. S. Turner,
Astrophys. J. 552 (2001) L1, astro-ph/0010171.

[5] http://lhc-new-homepage.web.cern.ch/lhc-new-homepage/.

[6] A. Ali, C. Greub, G. Hiller and E. Lunghi, hep-ph/0112300,
to appear in Phys. Rev. D.

[7] J. H. Christenson, J. W. Cronin, V. L. Fitch and R. Turlay,
Phys. Rev. Lett. 13 (1964) 138.

[8] http://www.lns.cornell.edu/public/CLEO/.

[9] K. W. Edwards et al. [CLEO Collaboration], CLNS 02/1781, CLEO 02-4,
submitted to Phys. Rev. D Rapid Communications, hep-ex/0204017.

[10] http://belle.kek.jp/.

[11] K. Abe et al. [BELLE Collaboration], KEK Preprint 2001-172,
BELLE Preprint 2002-6, hep-ex/0202027.

[12] K. Abe et al. [BELLE Collaboration], BELLE-CONF-0110, hep-ex/0107072.
K. Abe et al. [BELLE Collaboration], Phys. Rev. Lett. 88 (2002) 031802,
KEK Preprint 2001-118, BELLE Preprint 2001-13, DPNU-01-30, hep-ex/0109026.

[13] http://www-public.slac.stanford.edu/babar/.

[14] B. Aubert et al. [BABAR Collaboration], BABAR-CONF-02/01, SLAC-PUB-9153,
hep-ex/0203007.

[15] http://www-hera-b.desy.de/.

[16] http://lhcb.web.cern.ch/.

[17] P. Ball et al., CERN-TH/2000-101, hep-ph/0003238.

[18] http://www-btev.fnal.gov/.

8

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C39%2C252
http://www.slac.stanford.edu/BFROOT/www/doc/PhysBook/physBook.html
http://xxx.lanl.gov/abs/hep-ph/9806471
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ARNUA%2C43%2C27
http://xxx.lanl.gov/abs/hep-ph/9302210
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ASJOA%2C552%2CL1
http://xxx.lanl.gov/abs/astro-ph/0010171
http://lhc-new-homepage.web.cern.ch/lhc-new-homepage/
http://xxx.lanl.gov/abs/hep-ph/0112300
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C13%2C138
http://www.lns.cornell.edu/public/CLEO/
http://xxx.lanl.gov/abs/hep-ex/0204017
http://belle.kek.jp/
http://xxx.lanl.gov/abs/hep-ex/0202027
http://xxx.lanl.gov/abs/hep-ex/0107072
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C88%2C031802
http://xxx.lanl.gov/abs/hep-ex/0109026
http://www-public.slac.stanford.edu/babar/
http://xxx.lanl.gov/abs/hep-ex/0203007
http://www-hera-b.desy.de/
http://lhcb.web.cern.ch/
http://xxx.lanl.gov/abs/hep-ph/0003238
http://www-btev.fnal.gov/


References

[19] http://www-cdf.fnal.gov/.

[20] http://www-d0.fnal.gov/.

[21] H. Albrecht et. al [ARGUS Collaboration], Phys. Lett. B 192 (1987) 245,
DESY-87-029.

[22] K. Abe et al. [BELLE Collaboration], KEK Preprint 2002-6, Belle Preprint 2002-8,
submitted to Phys. Rev. Lett., hep-ex/0204002.

[23] Y. Nir, Lectures given at the “55th Scottish Universities Summer School of
Physics” on “Heavy Flavour Physics”, WIS/18/01-Aug-DPP, hep-ph/0109090.

[24] M. Neubert, Adv. Ser. Direct. High Energy Phys. 15 (1998) 239, hep-ph/9702375.

[25] M. Beneke, T. Feldmann and D. Seidel, Nucl. Phys. B 612 (2001) 25,
hep-ph/0106067.

[26] D. A. Demir, K. A. Olive and M. B. Voloshin, hep-ph/0204119.

[27] T. M. Aliev, A. Ozpineci and M. Savici, hep-ph/0203045.

[28] G. K. Yeghiyan, Mod. Phys. Lett. A 16 (2001) 2151.

[29] C.-S. Huang, W. Liao, Q. Yan and S. Zhu, hep-ph/0110147.

[30] Z. Xiong and J. M. Yang, hep-ph/0105260.

9

http://www-cdf.fnal.gov/
http://www-d0.fnal.gov/
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB192%2C245
http://xxx.lanl.gov/abs/hep-ex/0204002
http://xxx.lanl.gov/abs/hep-ph/0109090
http://xxx.lanl.gov/abs/hep-ph/9702375
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB612%2C25
http://xxx.lanl.gov/abs/hep-ph/0106067
http://xxx.lanl.gov/abs/hep-ph/0204119
http://xxx.lanl.gov/abs/hep-ph/0203045
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA16%2C2151
http://xxx.lanl.gov/abs/hep-ph/0110147
http://xxx.lanl.gov/abs/hep-ph/0105260




PART I

Preliminaries





1. The Standard Model

1 The Standard Model

We do not want to give a thorough overview of the Standard Model in this place. There
are many text books that discuss the Standard Model in detail. We restrict ourselves
to give the symmetries and the matter content of the model and the Lagrangian. Fur-
thermore, we will briefly discuss the Yukawa couplings. The latter give, together with
the spontaneous symmetry breaking in the Higgs sector, rise to the fermion masses and
the Cabibbo-Kobayashi-Maskawa (CKM) matrix. The CKM matrix induces quark mix-
ing, which is crucial for transitions as for example b → s `+`−: in a scenario with unity
CKM matrix, it were simply absent. We will not, however, investigate the questions of
quantization and gauge fixing in this place.

We follow Nir [1] and define a model of elementary particles and their interactions by

1. the symmetries of the Lagrangian;

2. the representations of fermions and scalars;

3. the pattern of spontaneous symmetry breaking.

1.1 Symmetries and Particles

The Standard Model is defined as follows:

1. The gauge symmetry group GSM of the Standard Model is

GSM = SU(3)C ⊗ SU(2)L ⊗ U(1)Y .

2. The particle content and transformation properties of the matter and gauge fields of
the Standard Model we list in Tab. 1.1.

3. The only scalar field in the Standard Model, φ, picks up a non-vanishing vacuum
expectation value

〈φ〉 =
1√
2

(
0
v

)
,

and the symmetry group of the Standard Model is spontaneously broken:

GSM −→ SU(3)C ⊗ U(1)Q.
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Part I: Preliminaries

Field SU(3)C ⊗ SU(2)L ⊗ U(1)Y Q

Quarks Q′α
Li =

{(
u′α

d′α

)
L

,

(
c′α

s′α

)
L

,

(
t′α

b′α

)
L

} (
3,2,+1

6

) (
+2

3

−1
3

)
U ′α
Ri = {u′αR , c′αR , t′αR }

(
3,2,+2

3

)
+2

3

D′α
Ri = {d′αR , s′αR , b′αR }

(
3,2,−1

3

)
−1

3

Leptons L′Li =

{(
ν ′e
e′

)
L

,

(
ν ′µ
µ′

)
L

,

(
ν ′τ
τ ′

)
L

} (
1,2,−1

2

) (
0
−1

)
E ′
Ri = {e′R, µ′R, τ ′R} (1,1,−1) −1

Higgs φ =

(
φ+

φ0

) (
1,2,+1

2

) (
+1
0

)

φ̃ =

(
φ0∗

−φ−
) (

1,2,−1
2

) (
0
−1

)

Gauge Gµ (8,1, 0)
Bosons

Wµ (1,3, 0)

Bµ (1,1, 0)

Table 1.1: Particle content and transformation properties of the matter and gauge fields in
the Standard Model. The notation (C,L, Y ) means that the corresponding fields [SU(2)
singlets or doublets] transform according to a C and L dimensional representation of
SU(3)C and SU(2)L, respectively, and have hypercharge Y . α is the color index and

Q denotes the electrical charge of the particles. φ̃ = −τ2φ∗ does not represent an addi-
tional degree of freedom of the Standard Model. We merely list it here in order to have its
transformation properties ready at hand.
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1. The Standard Model

1.2 Lagrangian

The Standard Model Lagrangian is the most general renormalizable Lagrangian that is
consistent with the gauge symmetry GSM. The complete Standard Model Lagrangian (we
give it only in parts here) can be found eg in [2]. We divide the Lagrangian into three
parts:

LSM = Lkinetic + LHiggs + LYukawa.

In order to locally preserve gauge invariance, ie the symmetries of the Lagrangian, the
ordinary derivatives have to be replaced by the covariant ones:

∂µ −→ D′µ = ∂µ + igsG
aµLa + igW bµT b + ig′BµY.

Gaµ, W bµ and Bµ are the eight gluon fields, the three weak interaction and the hypercharge
fields, respectively. La denotes the SU(3)C and T b the SU(2)L generators, whereas Y are
the U(1)Y charges. The interaction between gauge and matter fields is described by the
covariant derivatives. We include the corresponding terms in Lkinetic. In order to clarify
the notation, we give the definitions of generic left- and right-handed fermion fields as we
use them in the following:

XL =
1− γ5

2
X, XR =

1 + γ5

2
X,

XL = X
1 + γ5

2
, XR = X

1− γ5

2
.

We have the following contributions to the kinetic part of LSM:

Lkinetic(Q
′
Li) = i Q

′
Li γµ

(
∂µ +

i

2
gsG

aµλa +
i

2
gW bµτ b +

i

6
g′Bµ

)
Q′
Li,

Lkinetic(U
′
Ri) = i U

′
Ri γµ

(
∂µ +

i

2
gsG

aµλa +
2 i

3
g′Bµ

)
U ′
Ri,

Lkinetic(D
′
Ri) = iD

′
Ri γµ

(
∂µ +

i

2
gsG

aµλa − i

3
g′Bµ

)
D′
Ri,

Lkinetic(L
′
Li) = i L

′
Li γµ

(
∂µ +

i

2
gW bµτ b − i

2
g′Bµ

)
L′Li,

Lkinetic(E
′
Ri) = i E

′
Ri γµ (∂µ − ig′Bµ)E ′

Ri,
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Lkinetic(φ) =

[(
∂µ +

i

2
gW bµτ b +

i

2
g′Bµ

)
φ†
]
·
[(
∂µ − i

2
gW bµτ b − i

2
g′Bµ

)
φ

]
,

Lkinetic(G) =− 1

4
Ga
µνG

aµν ,

Lkinetic(W ) =− 1

4
W a
µνW

aµν ,

Lkinetic(B) =− 1

4
Ba
µνB

aµν ,

The matrices λa and τ b are the Gell-Mann and Pauli matrices, respectively. The field
strength tensors are given by

Ga
µν = ∂µG

a
ν − ∂νG

a
µ − gsf

abcGb
µG

c
ν ,

W a
µν = ∂µW

a
ν − ∂νW

a
µ − g εabcW b

µW
c
ν ,

Ba
µν = ∂µB

a
ν − ∂νB

a
µ .

where fabc and εabc denote the SU(3) and SU(2) structure constants, respectively.

The scalar self-interactions of the Higgs field are described by the Higgs potential. We
have

LHiggs = µ2φ†φ− λ
(
φ†φ
)2
.

Note that both Lkinetic and LHiggs are CP conserving. In extensions of the scalar sector, as
eg multi Higgs-doublet models, LHiggs may give rise to CP violation.

Finally, we turn to the Yukawa couplings. We split the corresponding term LYukawa into a
quark and lepton contribution. They are given by

Lleptons
Yukawa =− Y e

ij L
′
Li φ

†E ′
Rj + h.c. and ,

Lquarks
Yukawa =− Y d

ij Q
′
Li φD

′
Rj − Y u

ij Q
′
Li φ̃ U

′
Rj + h.c. .

We stress that we have been working in the basis of flavor eigenstates up to now.
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1.3 Symmetry Breaking and the Generation of Masses

We write the Higgs field in the form

φ =

(
φ+

φ0

)
= 〈φ〉+ φd =

1√
2

(
0
v

)
+

(
φ+
d

φ0
d

)
,

where the vacuum expectation value v corresponds to the classical minimum of the Higgs
potential:

v =

√
µ2

λ
.

The direction of 〈φ〉 has been chosen such that the photon remains massless and the
electromagnetic interaction an unbroken symmetry. The Yukawa interactions give rise to
mass terms. For the gauge bosons it reads

LGM = g2v
2

2
W+
µ W

µ− +
v2

4

(
g2 + g′2

)
ZµZ

µ,

where

W±
µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)
and Zµ =

gW 3
µ − g′Bµ√
g2 + g′2

≡ cos θW W 3
µ − sin θW Bµ.

θW denotes the Weinberg angle. The field orthogonal to Zµ obtains no mass and couples
only to the electron (equally strongly to left- and right-handed components) and not to
the neutrino. It is identified with the electromagnetic field Aµ:

Aµ =
gW 3

µ + g′Bµ√
g2 + g′2

≡ cos θW W 3
µ + sin θW Bµ.

The masses of the physical gauge bosons are given by

m2
W =

g2 v2

2
and m2

Z =
m2
W

cos2 θW
.

The vacuum expectation value of the Higgs field gives rise to mass terms for the charged
leptons, whereas the neutrinos stay massless1. We have

L`M = −(M ′
`)ij E

′
LiE

′
Ri + h.c. ,

where

M ′
` =

v√
2
Y e and L′Li =

(
ν ′Li
E ′
Li

)
.

1There is evidence from several observations and experiments that neutrinos actually are equipped
with a tiny mass. We do in this thesis, however, not discuss extensions of the Standard Model that might
explain those masses.
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We may transformation the lepton fields according to LL = VLL
′
L, ER = VRE

′
R with unitary

matrices VL and VR, which can be chosen to diagonalize the mass matrix M ′
e:

M ′
` = VRM` V

†
L , with M` = diag(me,mµ,mτ ).

This automatically diagonalizes the interaction terms, too. Splitting the Yukawa couplings
of the leptons into mass and interaction terms, we get

Llepton masses
Yukawa = −Mij LLiERj + h.c. ,

Llepton interaction
Yukawa = − 1√

2
Mij LLi φ

†
dERj + h.c. .

Similarly, in the quark sector we find

Lquark masses
Yukawa = LqM = −ULM ′

U UR −DLM
′
DDR + h.c. ,

where

M ′
u =

v√
2
Y u, M ′

d =
v√
2
Y d and QLi =

(
ULi
DLi

)
.

Again we may transform the fields in order to diagonalize the mass matrices:

UR,L = V U
R,L U

′
R,L, MU = V U

R M ′
U

(
V U
L

)†
= diag(mu,mc,mt),

DR,L = V D
R,LD

′
R,L, MD = V D

R M ′
D

(
V D
L

)†
= diag(md,ms,mb).

In the new basis, the interaction between the W± bosons and fermions is of the form

LCC = −1

2

e

sin θW
W+
µ J

−µ − 1

2

e

sin θW
W−
µ J

+µ,

where

J−µ =U
′
LγµD

′
L + ν̄`Lγµ`L = ULγµVCKMDL + ν̄`Lγµ`L

= (ūL, c̄L, t̄L) γµVCKM

dLsL
bL

+ (ν̄eL, ν̄µL, ν̄τL) γµ

eLµL
τL

 ,

where the Cabibbo-Kobayashi-Maskawa matrix VCKM = V U
L (V D

L )†. There is one important
difference between the lepton and the quark sector. In the lepton case we have the freedom
to transform the neutrinos νL in the same manner as the left-handed charged leptons. This
is because we do not have to diagonalize a mass matrix for the neutrinos. For the quarks,
however, the transformation matrices for up and down type quarks are fixed independently,
when diagonalizing M ′

U and M ′
D.
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1. The Standard Model

The quark-Higgs interaction term in the mass basis, finally, is given by

Lquark-Higgs
Yukawa = −2

v

{
URMU UL φ

0∗
d − URMU VCKMDL φ

+
d

+DRMD V
†
CKM UL φ

−
d +DRMDDL φ

0
d + h.c.

}
.

1.4 The CKM Matrix

We will now give two parametrizations of the CKM matrix and then shortly discuss some
issues of the knowledge we have on its parameters.

The entries of the CKM matrix are conveniently called

VCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 .

There are actually three real and one imaginary physical parameter: three angles and one
complex phase. The standard parameterization [3], used by the particle data group, is
given by

VCKM =

 c12 c13 s12 c13 s13 e−i δ

−s12 c23 − c12 s23 s13 ei δ c12 c23 − s12 s23 s13 ei δ s23 s13

s12 s23 − c12 c23 s13 ei δ −s23 s12 − s12 c23 s13 ei δ c23 c13

 ,

where cij ≡ cos θij and sij ≡ sin θij.

A very useful parameterization is the Wolfenstein parameterization [4] with the four pa-
rameters λ, A, ρ and η. It makes use of the fact that s13 = O(10−3) and s23 = O(10−2),
and thus c13 = c23 = 1 to very good accuracy.

VCKM =

 1− λ2

2
λ Aλ3(ρ− iη)

−λ 1− λ2

2
Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4).

λ = |Vus| ≈ 0.22 plays the role of an expansion parameter. The Wolfenstein parameteriza-
tion makes it easy to keep track of the magnitude of the elements of VCKM.

The unitarity of the CKM matrix implies certain relations among the matrix elements, as
for example

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0,

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0, (1)

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0.
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Geometrically, these relations may be interpreted as triangles, called unitarity triangles.

The three angles of the unitarity triangle defined by the second equation in (1) are defined
as

α ≡ arg

[
− VtdV

∗
tb

VudV
∗
ub

]
, β ≡ arg

[
−VcdV

∗
cb

VtdV
∗
tb

]
, γ ≡ arg

[
−VudV

∗
ub

VcdV
∗
cb

]
.

They are physical quantities and can be measured independently in B decays.

We conclude this abstract of the Standard Model and give the numerical values for some
of the parameters and show a plot (see Fig. 1.1) illustrating the present Standard Model
constraints on the CKM matrix.

λ = 0.2221± 0.0021, A = 0.827± 0.058,

ρ = 0.23± 0.11, η = 0.37± 0.08,

sin(2β) = 0.77± 0.08, sin(2α) =− 0.21± 0.56, 0.43 . sin2γ ≤ 0.91 .
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-1

0

1

-1 0 1 2

sin 2βWA

∆md

∆ms
 & ∆md

|εK|

|εK|

|Vub/Vcb|

ρ

η

CK M
f i t t e r

Figure 1.1: Present Standard Model constraints and the result from the global CKM fit
visualized in the ρ−η plane. This and further plots may be obtained from the “CKMfitter”
home page [5].
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2 Effective Hamiltonian

The strong interaction, binding quarks into hadrons, is characterized by the typical energy
scale of hadrons [O(1 GeV)]. As we will discuss in Section 3, this allows to describe B de-
cays by the corresponding b quark transitions, which involve the scale mb [O(4.8 GeV)].
The decay of a b quark, on the other hand, is mediated through W and Z exchange, which
involves the much higher scale mW,Z . The fact that we have two energy scales of very dif-
ferent magnitude, ie mb � mW,Z , allows us to look for an expansion in the small parameter
given by the ratio of these two scales.

The following example shows the basic idea of the effective theory describing weak interac-
tions of quarks. In the Standard Model, the tree level amplitude for the transition b c→ s c
is given by

A = −4GF√
2
V ∗
csVcb

m2
W

k2 −m2
W

(s̄LγµcL)(c̄Lγ
µbL).

The momentum transfer through the W propagator is much smaller than mW . Therefore,
we may expand the W propagator in terms of k2/m2

W :

A =
4GF√

2
V ∗
csVcb(s̄LγµcL)(c̄Lγ

µbL) +O
(
k2

m2
W

)
.

The same result is obtained from the effective Hamiltonian

Heff =
4GF√

2
V ∗
csVcb(s̄LγµcL)(c̄Lγ

µbL) + higher dimensional operators.

Neglecting terms of O(k2/m2
W ), ie discarding higher dimensional operators, is an excellent

approximation.

�

�

�

�

�

�

�

�

�
��� ���

	�


Figure 2.1: b c→ s c at tree level in the full a) and effective theory b).
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2. Effective Hamiltonian

The general idea of the effective Hamiltonian technique is to integrate out all heavy degrees
of freedom of a given theory. Formally, this is achieved in the framework of Operator
Product Expansion (OPE). For an excellent introduction to effective Hamiltonians we refer
to [6]. After integrating out the heavy fields, the higher dimensional operators, ie operators
with dimension greater than six, are dropped. Notice that OPE is not an approximation
by itself. We approximate by retaining the operators of dimension six only.

In this thesis we need the effective Hamiltonian that describes the process b → s `+`−. It
is of the form

Heff =
4GF√

2

[
2∑
i=1

Ci(λcO
c
i + λuO

u
i )− λt

10∑
i=3

CiOi

]
,

where λq = V ∗
qsVqb . Oi are dimension six operators and Ci are the corresponding Wilson

coefficients. As long as we are not interested in CP asymmetries, we may further simplify
Heff by exploiting |λu| � |λc| ≈ |λt|. Neglecting λu, we have, by the unitarity of the CKM
matrix, λc = −λt and thus

Heff = −4GF√
2
λt

10∑
i=1

CiOi .

Note that the last simplification is no longer valid for the process b→ d `+`−. The operators
Oi are advantageously chosen as in [7]:

O1 = (s̄LγµT
acL)(c̄Lγ

µT abL), O2 = (s̄LγµcL)(c̄Lγ
µbL),

O3 = (s̄LγµbL)
∑

q(q̄γ
µq), O4 = (s̄LγµT

abL)
∑

q(q̄γ
µT aq),

O5 = (s̄LγµγνγρbL)
∑

q(q̄γ
µγνγρq), O6 = (s̄LγµγνγρT

abL)
∑

q(q̄γ
µγνγρT aq),

O7 = e
g2s
mb(s̄Lσ

µνbR)Fµν , O8 = 1
gs
mb(s̄Lσ

µνT abR)Ga
µν ,

O9 = e2

g2s
(s̄LγµbL)

∑
`(

¯̀γµ`), O10 = e2

g2s
(s̄LγµbL)

∑
`(

¯̀γµγ5`).

This basis has the advantage that no traces involving γ5 have to be evaluated in calculations
of physical processes. The operators Oi involve only light degrees of freedom, whereas the
short distance effects are described through the Wilson coefficients Ci. The asymptotic
freedom of QCD allows to reliably calculate the Wilson coefficients at high scales in fixed
order perturbation theory. In the context of the Standard Model the heavy degrees of
freedom are the t quark and the W and Z0 boson. Extensions of the Standard Model
involve additional heavy particles. At least in many popular extensions, these particles
only affect the Wilson coefficients; the operators remain unchanged.

The Wilson coefficients are determined by matching the full theory to the effective theory.
It turns out that the Wilson coefficients depend on αs(µ) ln(mW/µ). If we choose µ = µW ≈
mW , these logarithms are small and the matching may be done in fixed order perturbation
theory. However, the matrix elements of the operators Oi involve typically scales that
are much lower; in the case of B decays of O(mb). Consequently, the matrix elements
depend on αs(µ) ln(mb/µ). If we set µ = µb ≈ mb in order to make these logarithms
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small, we spoil the fixed order perturbation theory for the Wilson coefficients because
αs(µb) ln(mW/µb) is of O(1) now. The renormalization group (RG) technique allows us to
sum these large logarithms. The renormalization group improved perturbation theory is
organized as follows:
The leading logarithmic (LL) or leading order (LO) approximation collects all terms of the
form [

αs(µ) ln

(
mW

µ

)]n
.

The next-to-leading logarithmic (NLL) contribution consequently involves the resumma-
tion of the terms

αs(µ)

[
αs(µ) ln

(
mW

µ

)]n
.

For the construction of the effective Hamiltonian the fact that hadrons are bound states
of quarks is irrelevant. However, once we want to calculate a physical process involving
hadrons, we have to deal with non-perturbative matrix elements. As mentioned in the
introduction, there exist different methods to achieve this task, each depending on the
energy scale and class of process. The natural tool in the case of inclusive B decays is
the heavy quark effective theory (HQET). To leading order in this expansion the hadronic
matrix elements are given by the corresponding quark level transitions. The leading term
of HQET can therefore be determined by ordinary perturbation theory.
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3 Heavy Quark Effective Theory

The QCD Lagrangian describing a quark Q of mass mQ and its interaction with gluons is
given by

L = ψ̄Q iDµγ
µψQ −mQψ̄QψQ , where Dµ = ∂µ − igsT

aAaµ.

In the heavy quark limit (mQ → ∞), the velocity vµ of the quark is conserved and its
four-momentum may be decomposed into an on-shell part, mQvµ, and an off-shell part kµ:

pµ = mQvµ + kµ, with v2 = 1.

The components of the residual momentum k are much smaller than mQ and are changed
by interactions of the heavy quark with light degrees of freedom by ∆k ∼ ΛQCD. The
large- and small-component fields

hv(x) ≡ eimv·x
1 + v/

2
ψQ(x)

and

Hv(x) ≡ eimv·x
1− v/

2
ψQ(x)

satisfy v/ hv = hv and v/Hv = −Hv, respectively. Expressed in terms of the new fields, the
quark field ψQ(x) reads

ψQ(x) = e−imv·x
(
hv(x) +Hv(x)

)
.

We may split the covariant derivative D into “longitudinal” and “transverse” parts:

Dµ
⊥ = Dµ − vµv ·D, with v ·D⊥ = 0,

{
D/⊥, v/

}
= 0.

Using relations as h̄vHv = 0 and h̄vD/⊥hv = 0, the Lagrangian L takes the form

L = h̄vi(v ·D)hv − H̄v(i v ·D + 2mQ)Hv + h̄viD/⊥Hv + H̄viD/⊥hv.

From this equation, taking the derivative with respect H̄v, we find the equation of motion

Hv =
1

2mQ + i v ·D
iD/⊥hv.

This allows us, on a classical level, to eliminate the heavy degree of freedom Hv from the
Lagrangian:

Leff = h̄vi(v ·D)hv + h̄viD/⊥
1

2mQ + i v ·D
iD/⊥hv

= h̄vi(v ·D)hv +
1

2mQ

∞∑
n=0

h̄viD/⊥

(
−i v ·D

2mQ

)n
iD/⊥hv. (2)
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It is possible to integrate out the heavy field Hv on the level of the generating functional
for QCD Green functions. This approach yields the same effective Lagrangian Leff (2).

Leff can be written as

Leff = h̄v i(v ·D)hv +
1

2mQ

h̄v(iD⊥)2hv +
gs

4mQ

h̄v σµν G
µνhv +O(1/m2

Q).

In the limit mQ →∞, only the term

L∞ = h̄v i(v ·D)hv.

survives. There appear neither Dirac matrices nor quark masses in this equation. For
mQ → ∞, the interactions of heavy quarks and gluons become independent of the spin
of the quark. Furthermore, when extending the theory to more than one heavy quark
moving at the same velocity, the Lagrangian L∞ is symmetric under rotations in the
flavor space. This is the heavy-quark spin-flavor symmetry [8]. We refrain from some
subtleties concerning the definition of the heavy quark mass mQ and refer to [9] and
references therein. The spin-flavor symmetry leads to many interesting relations between
the properties, especially the spectroscopy, of hadrons containing a heavy quark. We go
into further detail concerning this issue neither.
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4 Inclusive Semileptonic Decays

We make some comments on inclusive decays, without going into detail. We mainly draw
from [9]. Inclusive decay rates determine the probability of the decay of a particle into
the sum of all possible final states with a given set of quantum numbers. Inclusive decays
of hadrons containing a heavy quark can be analyzed using the heavy quark expansion.
Furthermore, there is the hypothesis of quark-hadron duality. The assumption is that
physical quantities are calculable after a “smearing” or “averaging” procedure has been
applied. In the case of semileptonic decays the averaging is provided by integrating over
the leptonic phase space. It provides a smearing of the invariant hadronic mass of the final
state (so-called global duality). For non-leptonic decays, on the other hand, the hadronic
mass is fixed, and the smearing effect comes only from the summation over many hadronic
states (so-called local duality). Clearly, local duality is a stronger assumption than global
duality. The quark-hadron duality, though it is a natural assumption, cannot be derived
from first principles.

We make use of the optical theorem and write the decay width of a hadron Hb containing
a b quark as

Γ(Hb → X) = Im

[
1

2mHb

〈Hb|T |Hb〉
]
.

The transition operator T is given by

T = i

∫
d4xT

{
Heff(x),Heff(0)

}
.

T denotes the time-ordering operator and Heff is the weak effective Lagrangian, obtained
from the Standard Model by integrating out the heavy degrees of freedom (t, W and Z).
Inserting a complete set of states, we recover the standard expression for the decay rate:

Γ(Hb → X) =
1

2mHb

∑
X

(2π)4 δ4(pH − pX)
∣∣〈X|Heff|Hb〉

∣∣2.
It is possible to construct an operator product expansion for the transition operator T .
The result is

T = Γb b̄b+
ZG
m2
b

b̄ σµνbG
µν +

∑ zi
m3
b

(
b̄Γiq

)(
q̄Γib

)
+O

(
m−4
b

)
.

We apply the results of the last section and express 〈Hb|b̄b|Hb〉 as

〈Hb|b̄b|Hb〉 = 1 +
1

2m2
b

〈Hb|h̄(iD)2h|Hb〉+
1

4m2
b

〈Hb|h̄σµνGµνh|Hb〉+O
(
m−3
b

)
.

A few concluding remarks are appropriate:

• In the limit mb → ∞, the inclusive decay rate of a B meson is given by the decay
rate of the underlying quark transition: ΓHb

= Γb (mb →∞).
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• There are no corrections of O(1/mb).

• The leading corrections, which are of O(1/m2
b), are due to interactions of the b quark

with the gluon field and to the fact that the b quark is not at rest.

• Spectator effects, accounting for non-perturbative contributions, contribute only at
O(1/m3

b).

This justifies the ansatz to approximate the inclusive B meson decays by the underlying
quark level transition. The decay of a b quark may be analyzed in the framework of weak
effective Hamiltonians. QCD corrections are calculated in ordinary perturbation theory
because typical gluons carry momenta set by the scale mb � ΛQCD, ie we are in the region
where asymptotic freedom applies.

In this work we calculate the O(αs) correction to the processes b→ s `+`− and b→ d `+`−.
The corrections to B → Xs `

+`− due to the heavy quark matrix elements are discussed in
Ref. [10].
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5 Matching Calculation for O1 and O2 and
Operator Mixing

In this chapter we look at an example for the matching procedure. This serves as an
illustration of operator mixing and, later on, the renormalization group evolution of Wilson
Coefficients.

Since the Wilson coefficients depend on the masses of the heavy particles only, we may
set all light quark masses equal to zero. Retaining these masses finite would lead to terms
proportional to m2

q/m
2
W , ie give rise to higher dimensional operators. In the present case

we thus set mq = 0, where q = u, d, c, s, b. Note that in a matching calculation for O7, for
example, mb as to be kept finite. The external momenta we choose to be all equal p with
p2 < 0. We do not put p = 0. This is to avoid infrared and collinear singularities.
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Figure 5.1: Feynman diagrams of O(αs) for the process b c→ s u in the Standard Model.
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5.1 Calculation of the Amplitude in the Full Theory

The relevant Feynman diagrams for the process b c → s u in the Standard Model are
shown in Fig. 5.1. The diagrams where the W boson is replaced by an unphysical Higgs
particle yield no contribution since all light quark masses are put to zero in the present
calculation. The evaluation of the diagrams is straight forward. The contributions from
diagrams 5.1c)-f) are ultraviolet finite and may be evaluated in d = 4 dimensions where
the following relations hold:

γαγβγµL⊗ γαγβγµL = 16 γµL⊗ γµL and γαγβγµL⊗ γµγβγαL = 4 γµL⊗ γµL. (3)

The sum of diagrams 5.1a)-f) and the counterterm associated with quark field renormal-
ization is given by

Aren
full =

4GF√
2
VbcV

∗
cd

[
S2 − 6

αs
4π

S1 ln

(
−m

2
W

p2

)
+ 2CF

αs
4π

S2 ln

(
−µ

2

p2

)]
, (4)

where S1 and S2 denote the tree level matrix elements of the operators O1 and O2, re-
spectively. Since we are working in the leading logarithmic (LL) approximation, we have
discarded constant terms of O(αs).

5.2 Calculation of the Amplitude in the Effective The-

ory

To get the amplitude in the effective theory we have to calculate diagrams 5.2a)-f). The
result reads

〈O1〉(0) = 2CF
αs
4π

1

ε
+
N2
c + 5

Nc

αs
4π

S1

[
1

ε
+ ln

(
−µ

2

p2

)]
+

3(N2
c − 1)

2N2
c

αs
4π

S2

[
1

ε
+ ln

(
−µ

2

p2

)]
,

〈O2〉(0) = 2CF
αs
4π

S2

[
1

ε
+ ln

(
−µ

2

p2

)]
− 6

αs
4π

S1

[
1

ε
+ ln

(
−µ

2

p2

)]
.

Adding the tree level and quark field renormalization contributions yields

〈O1〉qfr = S1 +
N2
c + 5

Nc

αs
4π

S1

[
1

ε
+ ln

(
−µ

2

p2

)]
+

3(N2
c − 1)

2N2
c

αs
4π

S2

[
1

ε
+ ln

(
−µ

2

p2

)]
,

〈O2〉qfr = S2 + 2CF
αs
4π

S2 ln

(
−µ

2

p2

)
− 6

αs
4π

S1

[
1

ε
+ ln

(
−µ

2

p2

)]
. (5)
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Figure 5.2: Feynman diagrams of O(αs) for the process b c→ s u in the effective theory.

Again we have discarded constant terms of O(αs). The calculation of the relevant integrals
had to be done in 4 − 2 ε dimensions. This causes the problem that Eqs. (3), valid for
d = 4, pick up a correction proportional to ε. This correction depends on the choice of
the evanescent operators and is related to the issue of γ5 in d dimensions . However,
being of next-to-leading order these additional contributions do not affect the present
calculation. The labels ‘qfr’ stand to indicate that the bare fields are expressed through
the renormalized ones already, ie that we have included the counter terms associated with
quark field renormalization:

qbare =
√
Z2 qren, where Z2 = 1− CF

αs
4π

1

ε
.

5.3 Operator Mixing

The divergences that have not been cancelled by the quark field renormalization have to
be removed by operator renormalization. We introduce new operators Oren

j according to

Oi = Zij O
ren
j

and require their matrix elements to be finite. The matrix Z can easily be read off from
Eq. (5). The result is

Z = 1 +
αs
4π

1

ε

(
6
Nc

−3(N2
c−1)

2N2
c

−6 0

)
+O(α2

s) = 1 +
αs
4π

1

ε

(
2 −4

3

−6 0

)
+O(α2

s). (6)
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Z being a matrix, the operators O1 and O2 mix under renormalization. This fact goes by
the name of operator mixing. The renormalized matrix elements of O1 and O2 now read

〈O1〉ren = S1 +
N2
c + 5

Nc

αs
4π

S1 ln

(
−µ

2

p2

)
− 3(N2

c − 1)

2N2
c

αs
4π

S2 ln

(
−µ

2

p2

)
, and

〈O2〉ren = S2 − 6
αs
4π

S1 ln

(
−µ

2

p2

)
+
N2
c − 1

Nc

αs
4π

S2 ln

(
−µ

2

p2

)
.

5.4 Wilson Coefficients

The Wilson coefficients C1 and C2 are determined by the requirement

Aren
full = Aren

eff =
4GF√

2
VbcV

∗
cd [C1〈O1〉ren + C2〈O2〉ren] ,

and we immediately find

C1(µ) = 6
αs
4π

ln

(
m2
W

µ2

)
+O(α2

s), C2(µ) = 1 +O(α2
s). (7)

A different approach is to consider not only fields, masses and coupling constants inHeff but
also the Wilson coefficients as bare quantities, ie we consider them as additional coupling
constants. The bare Wilson coefficients in terms of the renormalized ones read

Cbare
i = Zc

ij Cj.

The effective Hamiltonian is then given by

Heff =
4GF√

2
VbcV

∗
cdCjZ

c
ijZ

m,q,g
ik Ok,

where Oi are composed of renormalized quantities only, and the diagonal matrix Zm,q,g

collects all factors associated with the renormalization of fields, masses and coupling con-
stants. In the present case we have Zm,q,g = Z2

2 1. The connection between the matrices
Z and Zc is obtained from

Aeff =
4GF√

2
VbcV

∗
cdCj

(
Z−1

)
ji
Zm,q,g
ik 〈Ok〉0 =

4GF√
2
VbcV

∗
cdCjZ

c
ijZ

m,q,g
ik 〈Ok〉0.

We conclude
Z−1 = ZcT .

This alternative way of looking at renormalization is more suitable for the renormalization
group treatment of the operator mixing. In the last step we have already generalized
to an arbitrary number of operators that may possibly depend on masses and coupling
constants.
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6 Renormalization Group Equation

6.1 Renormalization of QCD

QCD is renormalized by expressing the bare quantities of the QCD Lagrangian through
their renormalized counterparts:

g(0)
s = µε Zg gs, m(0) = Z1/2

m m, (8)

GA(0)
µ = Z

1/2
3 GA

µ , q(0) = Z
1/2
2 q. (9)

The bare quantities are indicated by the superscript (0). In the MS scheme the renormal-
ization constants to O(αs) read

Zg = 1− 1

ε

αs
4π

(
11

6
Nc −

1

3
Nf

)
, Zm = 1− 3CF

1

ε

αs
4π

,

Z3 = 1− 1

ε

αs
4π

(
2

3
Nc −

5

3
Nf

)
, Z2 = 1− CF

1

ε

αs
4π

.

They may be cast in the general form

Zi = 1 +
∞∑
k=1

Zi,k(gs)

εk
.

Physical quantities must be independent of the renormalization scale µ. This implies
equations like

µ
d

dµ
g(0)
s = 0.

The above requirement leads to the renormalization group equation

µ
d

dµ
gs = −εgs + β(gs), with β(gs) = − gs

Zg

(
µ
d

dµ
Zg

)
= g2

s

∂Zg,1
∂gs

.

The last step shows that only the 1/ε term is needed to get the β function β(gs). We define
the constants βi through

β(gs) =: − g3
s

16π2

∞∑
i=0

βi

(
g2
s

16π2

)i
.

The constants β0 and β1 are given by

β0 =
11Nc − 2Nf

3
and β1 =

34

3
N2
c −

10

3
NcNf − 2CF Nf .
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Retaining the leading term of the β function, we have the following first order differential
equation for αs:

µ
d

dµ
αs(µ) = −2 β0

α2
s(µ)

4π
,

with the solution

αs(µ) =
αs(µ0)

1 + β0
αs(µ0)

4π
ln
(
µ2

µ2
0

) . (10)

αs(µ0 = mZ) can be extracted from LEP precision measurements. In the MS scheme one
finds αs(mZ) = 0.118±0.003, which we may take as initial condition for the renormalization
group equation. In the range mb ≤ µ ≤ mt we have Nf = 5. Together with Nc = 3 this
yields β0 = 23

3
.

Similarly, we find

µ
d

dµ
m(0) = 0 ⇒ µ

d

dµ
m(µ) = −γmm(µ),

with the anomalous dimension of the mass operator

γm(gs) =
1

Zm
µ
d

dµ
Zm = −gs

∂Zm
∂gs

.

We may decompose γm as

γm(gs) = γ(0)
m

g2
s(µ)

16π2
+ γ(1)

m

g4
s(µ)

(16 π2)2 +O
(
g6
s(µ)

)
,

where the leading term of γm is determined by

γ(0)
m = 6CF .

To the lowest order in the β and γm functions, the solution to the differential equation for
m(µ) is

m(µ) = m(µ0)

[
αs(µ)

αs(µ0)

] γ
(0)
m

2 β0

.

6.2 RGE for the Wilson Coefficients

As mentioned before, the relation between bare and renormalized Wilson coefficients is
given by

~C(0) = (Z−1)T ~C.

The starting point for finding the renormalization group equations for the Wilson coeffi-
cients Ci is

µ
d

dµ
~C(0) =

(
µ
d

dµ
Z−1T

)
~C + Z−1T

(
µ
d

dµ
~C

)
= 0.
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This gives rise to the equation

µ
d

dµ
~C = γT ~C,

where the anomalous dimension matrix γ = γ(gs(µ)) is defined as

γ := Z−1µ
d

dµ
Z. (11)

We may write the solution to this equation in terms of an evolution matrix U(µ, µW )

~C(µ) = U(µ, µW )~C(µW ),

which solves the same differential equation as ~C:

µ
d

dµ
U(µ, µW ) = γTU(µ, µW ).

The general solution to this equation is given by

U(µ, µW ) = 1 +

g(µ)∫
g(µW )

dg1
γT (g1)

β(g1)
+

g(µ)∫
g(µW )

dg1

g1∫
g(µW )

dg2
γT (g1)

β(g1)

γT (g2)

β(g2)
+ . . . . (12)

For g(µ) > g(µW ), the g-ordering operator Tg is defined through

Tg f(g1) . . . f(gn) =
∑
perm

Θ(gi1 − gi2) . . .Θ(gin−1 − gin) f(gi1) . . . f(gin).

The sum runs over all permutations {i1, ..., in} of {1, ..., n}. Tg provides ordering of the
functions f(gi) such that the arguments gi increase from left to right. g-ordering is neces-
sary because, in general, the matrices γ(g1) and γ(g2) do not commute. The operator Tg
allows us to write Eq. (12) in a more compact way:

U(µ, µW ) = Tg exp

 g(µ)∫
g(µW )

dg′
γT (g′)

β(g′)

 . (13)

Expanding the anomalous dimension matrix in the usual perturbative way,

γ(αs) = γ(0) αs
4π

+ γ(1)
( αs

4π

)2

+O(α3
s),

we readily find the LL approximation for U(µ, µW ):

U (0)(µ, µW ) = V

(
η

~γ(0)

2 β0

)
D

V −1,
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where

γ
(0)
D = V −1γ(0)TV and η =

αs(µW )

αs(µ)
.

The vector ~γ(0) contains the diagonal elements of the diagonal matrix γ
(0)
D .

Next, we consider the derivation of the NLL correction to the evolution matrix U(µ, µW ).
We make the ansatz

U(µ, µW ) =

[
1 +

αs(µ)

4π
J

]
U (0)(µ, µW )

[
1− αs(µW )

4π
J

]
.

Differentiating this equation and Eq. (13) with respect to g(µ) and expanding up to O(g2
s)

yields

2 J +

[
γ(0)T

β0

, J

]
= −γ

(1)T

β0

+ γ(0)T β1

β2
0

. (14)

In the basis where γ(0) is diagonal and with the definitions

JD := V −1J V and G := V −1γ(1)TV,

the solution to Eq. (14) is obtained easily. We get

(JD)ij =
β1

2 β2
0

δijΓi −

(
γ

(1)
D

)
ij

2 β0 + Γi − Γj
,

where Γi are the eigenvalues of γ(0)T , ie ~γ(0) = (Γ1, ...,Γn). The leading and next-to-leading
logarithmic approximations to the Wilson coefficients

~C = ~C(0) +
αs
4π

~C(1) +O(α2
s)

are then given by

~C(0)(µ) =U (0) ~C(0)(µW ),

~C(1)(µ) = η U (0) ~C(1)(µW ) +
[
J U (0) − η U (0) J

]
~C(0)(µW ).

We decompose the renormalization matrix Z according to

Z = 1 +
1

ε

αs
4π

Z(1) +O
(
α2
s

)
.

To leading order, the connection between the renormalization matrix Z and the anomalous
dimension matrix γ is given by the equation

γ
(0)
ij = −2Z

(1)
ij . (15)
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The leading order contribution to the anomalous dimension matrix reads [7]

γ(0) =



−4 8
3

0 −2
9

0 0 0 0 −32
27

0

12 0 0 4
3

0 0 0 0 −8
9

0

0 0 0 −52
3

0 2 0 0 −16
9

0

0 0 −40
9

−100
9

4
9

5
6

0 0 32
27

0

0 0 0 −256
3

0 20 0 0 −112
9

0

0 0 −256
9

56
9

40
9
−2

3
0 0 512

27
0

0 0 0 0 0 0 32
3
− 2 β0 0 0 0

0 0 0 0 0 0 −32
9

28
3
− 2 β0 0 0

0 0 0 0 0 0 0 0 −2 β0 0

0 0 0 0 0 0 0 0 0 −2 β0



.

The upper left 2× 2 block of γ(0) is readily obtained from Eq. (6) using relation (15). To
conclude, we explicitly solve the renormalization group equation for C1 and C2 to leading
order. This is rather simple, because the operators Oi, i > 2 do not mix into O1 and O2.
To leading order, the problem is thus only two dimensional. The aforementioned block we
denote by γ̃(0). After diagonalization of γ̃(0) we find

Ũ (0)(µ,mW ) =

 −3 3
2

1 1


 η

− 8
2 β0 0

0 η
4

2 β0


 −2

9
1
3

2
9

2
3

 .

The Wilson coefficients C1(µ) and C2(µ) are then given by

C
(0)
1 (µ) = η

6
23 − η−

12
23 ,

C
(0)
2 (µ) =

2

3
η

6
23 +

1

3
η−

12
23 .

Inserting expression (10) into η = αs(mW )/αs(µ) and expanding up to O
(
αs(mW )

)
we

recover the solutions (7).

6.3 Renormalization of Composite Operators

In the previous chapter we considered the mixing of the operators O1 and O2. In general,
the operator mixing is somewhat subtler, ie we have to take into account the different
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canonical dimensions of the operators. We follow Ref. [11]. In d space-time dimensions the
fields and coupling constants bare dimension

[q] = [q(0)] =
d− 1

2
, [GA

µ ] = [GA(0)
µ ] =

d− 2

2
,

[g(0)
s ] =

4− d

2
, [gs] = 0.

The dimensions of the operators Oi are

[O1,...,6] = [O
(0)
1,...,6] = 2 d− 2, [O

(0)
7 ] =

5 d

2
− 4, [O9,10] = 2 d− 2,

[O7,8] =
3 d

2
, [O

(0)
8 ] = 2 d− 2, [O

(0)
9,10] = 3 d− 6.

We define the dimensionless renormalization matrix

Z := 1 +
1

ε

αs
4π

Z(1) +O(αs)

through

Oj(µ) =
∑
i

µ2εDj
(
Z−1

)
ji
µ−2εD

(0)
i O

(0)
i .

The constants Di, D
(0)
i are defined by

2 εDi = [Oi]− (2 d− 2), 2 εD
(0)
i = [O

(0)
i ]− (2 d− 2).

Consequently, we have to replace Eq. (11) by

γ = Z̃−1µ
d

dµ
Z̃,

where
Z̃ = diag

(
µ2 ε ~D(0)

)
Z diag

(
µ−2 ε ~D

)
.

The connection between the anomalous dimension matrix γ and the renormalization matrix
Z reads, to O(αs),

γij = −2
αs
4π

Z
(1)
ij

(
1 +D

(0)
j −D

(0)
i

)
.
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7 LL, NLL and NNLL Contributions to
the transition b → s `+`−

We want to conclude Part I of this thesis with some comments on the operators O9 and
O10, and say a few clarifying words about the organization of our calculation of the virtual
corrections to b→ s `+`−. The latter is necessary because otherwise the leading logarithmic
(LL), next-to-leading logarithmic (NLL),... counting, as used in our papers, might cause
confusion in some points.

In the Standard Model, the process b→ s `+`− takes place only on the one-loop level. The
relevant O(α0

s) diagrams are shown in Fig. 7.1.
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Figure 7.1: Leading order Standard Model Feynman diagrams for the process b→ s `+`−.
a), b) Photonic and Z0 penguins, c) box diagram.

The operators

O9 =
e2

g2
s

(s̄LγµbL)
∑
`

(
¯̀γµ`

)
,

and O10 =
e2

g2
s

(s̄LγµbL)
∑
`

(
¯̀γµγ5`

)
,

on the other hand, have non-vanishing tree-level matrix elements contributing to the tran-
sition b→ s `+`−:

〈s `+`−|O9|b〉 =
e2

g2
s

(
ūs(p

′)γµLub(p)
)
×
(
ū`γ

µv`
)
,

〈s `+`−|O10|b〉 =
e2

g2
s

(
ūs(p

′)γµLub(p)
)
×
(
ū`γ

µγ5v`
)
.

In order to determine the Wilson coefficients C9 and C10, the amplitude needs to be cal-
culated in the full and in the effective theory. We do not present the calculation of the
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individual diagrams and merely give the results, which may be expressed through the
following functions:

B0(xt) =
1

4

[
xt

1− xt
+

xt lnxt
(xt − 1)2

]
,

C0(xt) =
xt
8

[
xt − 6

xt − 1
+

3xt + 2

(xt − 1)2
lnxt

]
,

D0(xt) =− 4

9
lnxt −

19x3
t − 25x2

t

36(xt − 1)3
+

5x4
t − 2x3

t − 6x2
t

18(xt − 1)4
lnxt,

D̃0(xt) =D0(xt)−
4

9
,

where xt = m2
t/m

2
W . The function B0(xt) results from the evaluation of the box diagrams,

C0(xt) from the Z0 penguins and D0(xt) from the photon penguins. The basic functions
B0(xt), C0(xt) and D0(xt) have been calculated by several authors, mainly by Inami and
Lim [12]. At the scale µW = mW , the Wilson coefficients C9 and C10 are given by

C9(mW ) =
αs(mW )

4π

[
4C0(xt) + D̃0(xt) +

1

sin2θW

(
10B0(xt)− 4C0(xt)

)]
,

C10(mW ) =
αs(mW )

4π

[
4C0(xt) + D̃0(xt)

]
.

At the matching scale mW both C9 and C10 have a vanishing O(α0
s) contribution. Evolving

the Wilson coefficients to a lower scale, however, yields a non-vanishing contribution C0
9 .

At the scale mW , the operator O2 is the only one with a non-vanishing leading contribution,
ie C

(0)
i (mW ) = δi2. To get the leading order term of C9 at a scale µ, it therefore suffices

to consider the part of the anomalous dimension matrix describing the mixing between O2

and O9. It is given by

γ̃(0) =

 0 −8
9

0 2 β0

 .

Following the exposition presented in Section 6.2, we find

Ũ (0)(µb,mW ) =

 1 0

− 4
9β0

(1− η−1) η−1

 .

From this we readily obtain the leading contribution to C9:

C
(0)
9 (µb) = − 4

9 β0

(
1− η−1

)
C

(0)
2 (mW ) = − 4

9 β0

(
1− η−1

)
.
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Note that, because O2 does not mix into O10, we have C
(0)
10 (µ) ≡ 0.

The formally leading term to the amplitude b→ s `+`− is given by

ALL = C
(0)
9 (µb)〈s `+`−|O9|b〉tree

and collects all terms of the form 1/g2
s

[
g2
s ln(mW/µ)

]n
. For the decay b → s `+`−, the

nomenclature is therefore as follows:

1

g2
s

[
g2
s ln

(
mW

µb

)]n
−→ LL (n = 1, 2, 3, . . .)

[
g2
s ln

(
mW

µb

)]n
−→ NLL (n = 0, 1, 2, . . .)

g2
s

[
g2
s ln

(
mW

µb

)]n
−→ NNLL (n = 0, 1, 2, . . .)

...

.

At next-to-leading order, we get contributions also from other operators, viz O7(µb) and
O10(µb) contribute at tree-level and O1,...,O6 at one-loop level. The NLL part to the
amplitude is composed as follows

ANLL =
6∑
i=1

C
(0)
i 〈Oi〉1-loop +

g2
s

16π2
C

(1)
7 〈O7〉tree + C

(0)
9 〈O9〉1-loop

+
g2
s

16π2
C

(1)
9 〈O9〉tree + C

(1)
10 〈O10〉tree.

Because the leading term, ÃLL, is numerically smaller than the next-to-leading contribution[
g2
s/(16 π2)

]
C

(1)
9 〈O9〉tree + C

(0)
9 〈O9〉1-loop, we have decided to adapt the systematics to the

numerical situation and to treat the LL term as a NLL contribution. The amplitude then
starts at NLL only:

ÃLL = 0, ÃNLL = ALL + ANLL.

As the Wilson coefficients of the gluonic penguin operators O3,...,O6 are much smaller
than C1(µb), C2(µb) we may safely neglect QCD corrections to their matrix elements in the
NNLL approximation. One of the main tasks completed in this thesis is the calculation of
the virtual O(αs) corrections to the matrix elements of O1 and O2. Further NNLL terms
arise from the one-loop corrections to O7, O8 and O10. A complete NNLL calculation
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would also require the two-loop matrix elements to the operator O9. However, it turned
out that numerically the NLL corrections associated with O9 are of the order of the NNLL
corrections to O1 and O2. We have therefore omitted the two-loop contributions from
O9 in our analysis. Unfortunately, we have not explicitly communicated this issue in our
publications. The following NNLL terms are taken into account in our calculation:

ÃNNLL =
2∑
i=1

(
C

(0)
i 〈Oi〉2-loop +

g2
s

16π2
C

(1)
i 〈Oi〉1-loop

)

+
g2
s

16π2
C

(1)
7 〈O7〉1-loop +

g4
s

(16 π2)2
C

(2)
7 〈O7〉tree +

g2
s

16π2
C

(1)
8 〈O8〉1-loop

+
10∑
i=9

(
g2
s

16π2
C

(1)
i 〈Oi〉1-loop +

g4
s

(16 π2)2
C

(2)
i 〈Oi〉tree

)
.
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ABSTRACT

We calculate O(αs) two-loop virtual corrections to the differential decay
width dΓ(B → Xs `

+`−)/dŝ where ŝ is the invariant mass squared of the
lepton pair, normalized to m2

b . We also include those contributions from
gluon bremsstrahlung which are needed to cancel infrared and collinear
singularities present in the virtual corrections. Our calculation is re-
stricted to the range 0.05 ≤ ŝ ≤ 0.25 where the effects from resonances
are small. The new contributions drastically reduce the renormalization
scale dependence of existing results for dΓ(B → Xs `

+`−)/dŝ. For the
corresponding branching ratio (restricted to the above ŝ range) the renor-
malization scale uncertainty gets reduced from ∼ ±13% to ∼ ±6.5%.

1Work partially supported by Schweizerischer Nationalfonds and SCOPES program

http://xxx.lanl.gov/abs/hep-ph/0103087
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB507%2C162


Part II: Physics Letters B 507 (2001) 162

1 Introduction

After the observation of the penguin-induced decay B → Xs γ [1] and the corresponding
exclusive channels such as B → K∗γ [2], rare B decays have begun to play an impor-
tant role in the phenomenology of particle physics. The measured decay rates are in good
agreement with the Standard Model (SM) predictions, putting strong constraints on its
various extensions. Another interesting decay mode in this context is the inclusive tran-
sition B → Xs `

+`− (` = e, µ). It has not been observed so far [3], but its detection
is expected at the B factories which are currently running. It is known that, unlike for
B → Xs γ, large resonant contributions from c̄c intermediate states come into the game
when considering B → Xs `

+`−. When the invariant mass
√
s of the lepton pair is close to

the mass of a resonance, only model dependent predictions for these long distance contri-
butions are available today. It is therefore unclear whether integrating the decay rate over
these domains can reduce the theoretical uncertainty below ±20% [4].

However, when restricting to regions of
√
s below the resonances, the long distance effects

are under control. In particular, all the available studies indicate that for the region 0.05 ≤
ŝ = s/m2

b ≤ 0.25 these non–perturbative effects are below 10% [5]–[10]. Consequently, the
differential decay rate for B → Xs `

+`− can be predicted precisely in this region using
renormalization group improved perturbation theory.

It is known that the next-to-leading logarithmic (NLL) result for the B → Xs `
+`− decay

rate suffers from a relatively large (±16%) matching scale (µW ) dependence [11, 12]. To
reduce it, next-to-next-to leading (NNLL) corrections to the Wilson coefficients were cal-
culated recently by Bobeth et al. [13]. This required a two-loop matching calculation of
the effective theory to the full SM theory, followed by a renormalization group treatment
of the Wilson coefficients, using up to three-loop anomalous dimensions [13, 14]. Including
these NNLL corrections to the Wilson coefficients, the matching scale dependence could
be removed to a large extent.

However, this partially NNLL result suffers from a relatively large (∼ ±13%) renormaliza-
tion scale (µb) dependence [µb ∼ O(mb)], as pointed out in Ref. [13]. The aim of the current
paper is to reduce this dependence by calculating NNLL corrections to the matrix elements
of the effective Hamiltonian given in the next section. Our main contribution is the calcu-
lation of the O(αs) two-loop virtual corrections to the matrix elements of the operators O1

and O2, as well as the O(αs) one-loop corrections to O7–O10. Also those bremsstrahlung
contributions are included which are needed to cancel infrared and collinear singularities in
the virtual corrections. The new contributions reduce the renormalization scale dependence
from ∼ ±13% to ∼ ±6.5%.

The remainder of this letter is organized as follows. In Section 2 we review the theoretical
framework. Our results for the virtual O(αs) corrections to the matrix elements of the
operators O1, O2, O7, O8 and O9 we present in Section 3. Section 4 is devoted to the
bremsstrahlung contributions. The combined corrections (virtual and bremsstrahlung) to
b → s `+`− are given in Section 5. Finally, in Section 6, we analyze the invariant mass
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distribution of the lepton pair in the range 0.05 ≤ ŝ ≤ 0.25.

2 Theoretical Framework

The most efficient tool for studying weak decays of B mesons is the effective Hamiltonian
technique. For the specific decay channels b→ s `+`− (` = µ, e), the effective Hamiltonian,
derived from the Standard Model (SM) by integrating out the t quark and the W boson,
is of the form

Heff = −4GF√
2
V ∗
tsVtb

10∑
i=1

CiOi , (1)

where Oi are dimension six operators and Ci are the corresponding Wilson coefficients.
The operators can be chosen as [13]

O1 = (s̄LγµT
acL)(c̄Lγ

µT abL), O2 = (s̄LγµcL)(c̄Lγ
µbL),

O3 = (s̄LγµbL)
∑

q(q̄γ
µq), O4 = (s̄LγµT

abL)
∑

q(q̄γ
µT aq),

O5 = (s̄LγµγνγρbL)
∑

q(q̄γ
µγνγρq), O6 = (s̄LγµγνγρT

abL)
∑

q(q̄γ
µγνγρT aq),

O7 = e
g2s
mb(s̄Lσ

µνbR)Fµν , O8 = 1
gs
mb(s̄Lσ

µνT abR)Ga
µν ,

O9 = e2

g2s
(s̄LγµbL)

∑
`(

¯̀γµ`), O10 = e2

g2s
(s̄LγµbL)

∑
`(

¯̀γµγ5`),

(2)

where the subscripts L and R refer to left- and right-handed components of the fermion
fields. We work in the approximation where the combination (V ∗

usVub) of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix elements is neglected; in this case the CKM structure
factorizes, as indicated in Eq. (1).

The factors 1/g2
s in the definition of the operators O7, O9 and O10, as well as the factor

1/gs present in O8 have been chosen by Misiak [11] in order to simplify the organization
of the calculation: with these definitions, the one-loop anomalous dimensions (needed
for a leading logarithmic (LL) calculation) of the operators Oi are all proportional to
g2
s , while two-loop anomalous dimensions (needed for a next-to-leading logarithmic (NLL)

calculation) are proportional to g4
s , etc.

After this important remark we now outline the principal steps which lead to a LL, NLL,
NNLL prediction for the decay amplitude for b→ s `+`−:

1. A matching calculation between the full SM theory and the effective theory has
to be performed in order to determine the Wilson coefficients Ci at the high scale
µW ∼ mW ,mt. At this scale, the coefficients can be worked out in fixed order
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perturbation theory, ie, they can be expanded in g2
s :

Ci(µW ) = C
(0)
i (µW ) +

g2
s

16π2
C

(1)
i (µW ) +

g4
s

(16 π2)2
C

(2)
i (µW ) +O(g6

s). (3)

At LL order, only C
(0)
i is needed, at NLL order also C

(1)
i , etc. While the coefficient

C
(2)
7 , which is needed for a NNLL analysis, is known for quite some [15], C

(2)
9 and

C
(2)
10 have been calculated only recently [13] (see also [16]).

2. The renormalization group equation (RGE) has to be solved in order to get the
Wilson coefficients at the low scale µb ∼ mb. For this RGE step the anomalous
dimension matrix to the relevant order in gs is required, as described above. After
these two steps one can decompose the Wilson coefficients Ci(µb) into a LL, NLL
and NNLL part according to

Ci(µb) = C
(0)
i (µb) +

g2
s(µb)

16π2
C

(1)
i (µb) +

g4
s(µb)

(16 π2)2
C

(2)
i (µb) +O(g6

s). (4)

3. In order to get the decay amplitude, the matrix elements 〈s `+`−|Oi(µb)|b〉 have to
be calculated. At LL precision, only the operator O9 contributes, as this operator
is the only one which at the same time has a Wilson coefficient starting at lowest
order and an explicit 1/g2

s factor in the definition. Hence, in the NLL precision QCD
corrections (virtual and bremsstrahlung) to the matrix element of O9 are needed.
They have been calculated a few years ago [11, 12]. At NLL precision, also the other
operators start contributing, viz O7(µb) and O10(µb) contribute at tree-level and the
four-quark operators O1, ..., O6 at one-loop level. Accordingly, QCD corrections to
the latter matrix elements are needed for a NNLL prediction of the decay amplitude.

As known for a long time [17], the formally leading term ∼ (1/g2
s)C

(0)
9 (µb) to the amplitude

for b→ s `+`− is smaller than the NLL term ∼ (1/g2
s)
[
g2
s/(16 π2)

]
C

(1)
9 (µb). We adapt our

systematics to the numerical situation and treat the sum of these two terms as a NLL
contribution. This is, admittedly some abuse of language, because the decay amplitude
then starts out with a term which is called NLL.

As pointed out in step 3), O(αs) QCD corrections to the matrix elements 〈s `+`−|Oi(µb)|b〉
have to be calculated in order to obtain the NNLL prediction for the decay amplitude.
In the present paper we systematically evaluate virtual corrections of O(αs) to the matrix
elements of O1, O2, O7, O8, O9 and O10. As the Wilson coefficients of the gluonic penguin
operators O3, ..., O6 are much smaller than those of O1 and O2, we neglect QCD corrections
to their matrix elements. As discussed in more detail later, we also include those brems-
strahlung diagrams which are needed to cancel infrared and collinear singularities from
the virtual contributions. The complete bremsstrahlung corrections, ie, all the finite parts,
however, will be given elsewhere [20]. We anticipate that the QCD corrections calculated
in the present letter substantially reduce the scale dependence of the NLL result.
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Figure 3.1: Complete list of two-loop Feynman diagrams for b → sγ∗ associated with the
operators O1 and O2. The fermions (b, s and c quarks) are represented by solid lines,
whereas the curly lines represent gluons. The circle-crosses denote the possible locations
for emission of a virtual photon.

3 Virtual Corrections to O1, O2, O7, O8 and O9

In this section we present our results for the virtual O(αs) corrections induced by the
operators O1, O2, O7, O8, and O9. Using the naive dimensional regularization (NDR)
scheme in d = 4 − 2 ε dimensions, both ultraviolet and infrared singularities show up as
1/εn poles (n = 1, 2). The ultraviolet singularities cancel after including the counterterms.
Collinear singularities are regularized by retaining a finite strange quark mass ms. They
are cancelled together with the infrared singularities at the level of decay width, taking
the bremsstrahlung process b → s `+`−g into account. Gauge invariance implies that the
QCD corrected matrix elements of the operators Oi can be written as

〈s `+`−|Oi|b〉 = F̂
(9)
i 〈O9〉tree + F̂

(7)
i 〈O7〉tree , (5)

where 〈O9〉tree and 〈O7〉tree are the tree-level matrix elements of O9 and O7, respectively.

3.1 Virtual Corrections to O1 and O2

The complete list of Feynman diagrams for the two-loop matrix elements of the operators
O1 and O2 is shown in Fig. 3.1. Our calculation follows the line of [18, 19] where the
contributions of O2 to the processes B → Xsγ and B → Xsg have been evaluated. There,
the results have been found as expansions in terms of powers and logarithms of the small
parameter m̂2

c = m2
c/m

2
b . The central point of the procedure is to use Mellin-Barnes
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representations of certain denominators in the Feynman parameter integrals, as described
in detail in Refs. [18, 19]. In the present case, however, we have an additional mass scale:

q2, the invariant mass squared of the lepton pair. For values of q2 satisfying q2

m2
b
< 1 and

q2

4m2
c
< 1, most of the diagrams allow a Taylor series expansion in q2 and can be calculated

in combination with a Mellin-Barnes representation. This method does not work for the
diagram in Fig. 3.1a) where the photon is emitted from the internal line. Instead, we
applied a Mellin-Barnes representation twice. We will explain this procedure in detail in
Ref. [20]. The diagrams in Fig. 3.1e) finally, we calculated using the heavy mass expansion
technique [21].

Using these methods, the unrenormalized form factors F̂ (7,9) of O1 and O2, as defined in
Eq. (5), are then obtained in the form

F̂ (7,9) =
∑
i,j,l,m

c
(7,9)
ijlm ŝ

i lnj(ŝ)
(
m̂2
c

)l
lnm(m̂c) , (6)

where ŝ = q2/m2
b and m̂c = mc/mb. i, j,m are non-negative integers and l = −i,−i +

1/2,−i + 2/2, . . . .. We keep the terms with i and l up to 3, after checking that higher
order terms are small for 0.05 ≤ ŝ ≤ 0.25, the range considered in this Letter.

The counterterm contributions are of various origin. There are counterterms due to quark
field renormalization, renormalization of the strong coupling constant gs and renormaliza-
tion of the charm and bottom quark masses. We stress that we use the pole mass definition
for both mc and mb. Additionally, we also have to take operator mixing into account. The
corresponding counterterms to the matrix elements 〈CiOi〉 are of the form

〈CiOi〉 = Ci
∑
j

δZij〈Oj〉, (7)

δZij =
αs
4π

(
a01
ij +

1

ε
a11
ij

)
+

α2
s

(4π)2

(
a02
ij +

1

ε
a12
ij +

1

ε2
a22
ij

)
+O(α3

s). (8)

Most of the coefficients almij needed for our calculation are given in Ref. [13]. As some are
new, we list those for i = 1, 2 and j = 1, 2, 4, 7, 9, 11, 12 that are different from zero:

â11 =

 −2 4
3
−1

9
0 −16

27
5
12

2
9

6 0 2
3

0 −4
9

1 0

 ,
a12

17 = − 58
243

, a12
19 = − 64

729
, a22

19 = 1168
243

,

a12
27 = 116

81
, a12

29 = 776
243

, a22
29 = 148

81
.

(9)

O11 and O12, entering Eq. (7), are evanescent operators, defined as

O11 = (s̄LγµγνγρT
acL) (c̄Lγ

µγνγρT abL)− 16O1,

O12 = (s̄LγµγνγρcL) (c̄Lγ
µγνγρbL)− 16O2.

(10)
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3. Virtual Corrections to O1, O2, O7, O8 and O9

Before we give the result for the renormalized form factors, we remark that only dia-
gram 3.1f) (and also its renormalized version) suffers from infrared and collinear singu-
larities. As this diagram can easily be combined with diagram 3.2b) associated with the
operator O9, we will take it into account in the next subsection, when discussing virtual
corrections to O9.

We decompose the renormalized matrix elements of Oi (i = 1, 2) as

〈s `+`−|C(0)
i Oi|b〉 = C

(0)
i

(
− αs

4π

) [
F

(9)
i 〈Õ9〉tree + F

(7)
i 〈Õ7〉tree

]
, (11)

with Õ9 = αs

4π
O9 and Õ7 = αs

4π
O7. Using the shorthand notations Lµ = ln(µ/mb) and

Ls = ln(ŝ), the form factors F
(9)
i and F

(7)
i read

F
(9)
1 =

(
−1424

729
+

16

243
iπ +

64

27
Lc

)
Lµ −

16

243
Lµ Ls +

(
16

1215
− 32

135
m̂−2
c

)
Lµ ŝ

+

(
4

2835
− 8

315
m̂−4
c

)
Lµ ŝ

2 +

(
16

76545
− 32

8505
m̂−6
c

)
Lµ ŝ

3 − 256

243
L2
µ + f

(9)
1 , (12)

F
(9)
2 =

(
256

243
− 32

81
iπ − 128

9
Lc

)
Lµ +

32

81
Lµ Ls +

(
− 32

405
+

64

45
m̂−2
c

)
Lµ ŝ

+

(
− 8

945
+

16

105
m̂−4
c

)
Lµ ŝ

2 +

(
− 32

25515
+

64

2835
m̂−6
c

)
Lµ ŝ

3 +
512

81
L2
µ + f

(9)
2 , (13)

F
(7)
1 = −208

243
Lµ + f

(7)
1 , F

(7)
2 =

416

81
Lµ + f

(7)
2 . (14)

The analytic results for f
(9)
1 , f

(7)
1 , f

(9)
2 , and f

(7)
2 (expanded up to ŝ3 and (m̂2

c)
3) are rather

lengthy. The formulas become relatively short, however, if we give the charm quark mass
dependence in numerical form (for the characteristic values of m̂c=0.27, 0.29 and 0.31).

We write the functions f
(b)
a as

f (b)
a =

∑
i,j

k(b)
a (i, j) ŝi Ljs (a = 1, 2; b = 7, 9; i = 0, ..., 3; j = 0, 1). (15)

The numerical values for the quantities k
(b)
a (i, j) are given in Tab. 3.1 and 3.2.

3.2 Virtual Corrections to the Matrix Elements of O7, O8 and O9

We first turn to the virtual corrections to the matrix element of the operator O9, consisting
of the vertex correction shown in Fig. 3.2b) and of the quark self-energy contributions.
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m̂c = 0.27 m̂c = 0.29 m̂c = 0.31

k
(9)
1 (0, 0) −12.327 +0.13512 i −11.973 +0.16371 i −11.65 +0.18223 i

k
(9)
1 (0, 1) −0.080505− 0.067181 i −0.081271− 0.059691 i −0.080959− 0.051864 i

k
(9)
1 (1, 0) −33.015− 0.42492 i −28.432− 0.25044 i −24.709− 0.13474 i

k
(9)
1 (1, 1) −0.041008 +0.0078685 i −0.040243 +0.016442 i −0.036585 +0.024753 i

k
(9)
1 (2, 0) −76.2− 1.5067 i −57.114− 0.86486 i −43.588− 0.4738 i

k
(9)
1 (2, 1) −0.042685 +0.015754 i −0.035191 +0.027909 i −0.021692 +0.036925 i

k
(9)
1 (3, 0) −197.81− 4.6389 i −128.8− 2.5243 i −86.22− 1.3542 i

k
(9)
1 (3, 1) −0.039021 +0.039384 i −0.017587 +0.050639 i 0.013282 +0.052023 i

k
(7)
1 (0, 0) −0.72461− 0.093424 i −0.68192− 0.074998 i −0.63944− 0.05885 i

k
(7)
1 (0, 1) 0 0 0

k
(7)
1 (1, 0) −0.26156− 0.15008 i −0.23935− 0.12289 i −0.21829− 0.10031 i

k
(7)
1 (1, 1) −0.00017705 +0.02054 i 0.0027424 +0.019676 i 0.0053227 +0.018302 i

k
(7)
1 (2, 0) 0.023851− 0.20313 i −0.0018555− 0.175 i −0.022511− 0.14836 i

k
(7)
1 (2, 1) 0.020327 +0.016606 i 0.022864 +0.011456 i 0.023615 +0.0059255 i

k
(7)
1 (3, 0) 0.42898− 0.099202 i 0.28248− 0.12783 i 0.17118− 0.12861 i

k
(7)
1 (3, 1) 0.031506 +0.00042591 i 0.029027− 0.0082265 i 0.022653− 0.0155 i

Table 3.1: Coefficients in the decomposition of f
(9)
1 and f

(7)
1 for three different values of

m̂c [Eq. (15)].

The sum of these corrections is ultraviolet finite, but suffers from infrared and collinear
singularities. The result can be written as

〈s `+`−|C9O9|b〉 = C̃
(0)
9

(
− αs

4π

) [
F

(9)
9 〈Õ9〉tree + F

(7)
9 〈Õ7〉tree

]
, (16)

with

Õ9 =
αs
4π

O9 and C̃
(0)
9 =

4π

αs

(
C

(0)
9 +

αs
4π

C
(1)
9

)
.

The form factors F
(9)
9 and F

(7)
9 read (keeping terms up to order ŝ3)

F
(9)
9 =

16

3
+

20

3
ŝ+

16

3
ŝ2 +

116

27
ŝ3 + finf , (17)

F
(7)
9 = −2

3
ŝ

(
1 +

1

2
ŝ+

1

3
ŝ2

)
, (18)

54



3. Virtual Corrections to O1, O2, O7, O8 and O9

m̂c = 0.27 m̂c = 0.29 m̂c = 0.31

k
(9)
2 (0, 0) 7.9938− 0.81071 i 6.6338− 0.98225 i 5.4082− 1.0934 i

k
(9)
2 (0, 1) 0.48303 +0.40309 i 0.48763 +0.35815 i 0.48576 +0.31119 i

k
(9)
2 (1, 0) 5.1651 +2.5495 i 3.3585 +1.5026 i 1.9061 +0.80843 i

k
(9)
2 (1, 1) 0.24605− 0.047211 i 0.24146− 0.098649 i 0.21951− 0.14852 i

k
(9)
2 (2, 0) −0.45653 +9.0402 i −1.1906 +5.1892 i −1.8286 +2.8428 i

k
(9)
2 (2, 1) 0.25611− 0.094525 i 0.21115− 0.16745 i 0.13015− 0.22155 i

k
(9)
2 (3, 0) −25.981 +27.833 i −17.12 +15.146 i −12.113 +8.1251 i

k
(9)
2 (3, 1) 0.23413− 0.2363 i 0.10552− 0.30383 i −0.079692− 0.31214 i

k
(7)
2 (0, 0) 4.3477 +0.56054 i 4.0915 +0.44999 i 3.8367 +0.3531 i

k
(7)
2 (0, 1) 0 0 0

k
(7)
2 (1, 0) 1.5694 +0.9005 i 1.4361 +0.73732 i 1.3098 +0.60185 i

k
(7)
2 (1, 1) 0.0010623− 0.12324 i −0.016454− 0.11806 i −0.031936− 0.10981 i

k
(7)
2 (2, 0) −0.14311 +1.2188 i 0.011133 +1.05 i 0.13507 +0.89014 i

k
(7)
2 (2, 1) −0.12196− 0.099636 i −0.13718− 0.068733 i −0.14169− 0.035553 i

k
(7)
2 (3, 0) −2.5739 +0.59521 i −1.6949 +0.76698 i −1.0271 +0.77168 i

k
(7)
2 (3, 1) −0.18904− 0.0025554 i −0.17416 +0.049359 i −0.13592 +0.093 i

Table 3.2: Coefficients in the decomposition of f
(9)
2 and f

(7)
2 for three different values of

m̂c [Eq. (15)].

where the function finf contains the infrared and collinear singularities. Its explicit form is
[using r = (ms/mb)

2]

finf =
8

3 ε

[
µ

mb

]2ε(
1 + ŝ+

1

2
ŝ2 +

1

3
ŝ3

)
+

4

3 ε

[
µ

mb

]2ε

ln(r) +
2

3
ln(r)− 2

3
ln2(r). (19)

At this place, it is convenient to incorporate the renormalized diagram 3.1f), which has
not been taken into account so far. It is easy to see that the two loops factorize into two
one-loop contributions. The charm loop has the Lorentz structure of O9 and can therefore
be absorbed into an effective Wilson coefficient: diagram 3.1f) is properly included by

modifying C̃
(0)
9 in Eq. (16) as follows:

C̃
(0)
9 −→ C̃

(0,mod)
9 = C̃

(0)
9 +

(
C

(0)
2 +

4

3
C

(0)
1

)
H0, (20)
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Figure 3.2: Some Feynman diagrams for b → sγ∗ or b → s `+`− associated with the
operators O7, O8 and O9. The circle-crosses denote the possible locations where the virtual
photon is emitted, while the crosses mark the possible locations for gluon bremsstrahlung.
See text.

where the charm-loop function H0 reads (in expanded form)

H0 =
1

2835

[
−1260 + 2520 ln

(
µ

mc

)
+ 252

ŝ

m̂2
c

+ 27
ŝ2

m̂4
c

+ 4
ŝ3

m̂6
c

]
. (21)

In the context of virtual corrections also the O(ε) part of this loop function is needed. We
neglect it here since it will drop out in combination with gluon bremsstrahlung. Note that
H0 = h(m̂2

c , ŝ) + 8/9 ln(µ/mb), with h defined in [12, 13].

We now turn to the virtual corrections to the matrix element of the operator O7, consist-
ing of the vertex- [Fig. 3.2a)] and self-energy corrections. The sum of these diagrams is
ultraviolet singular. After renormalization, the result can be written as

〈 s`+`−|C7O7|b〉 = C̃
(0)
7

(
− αs

4π

) [
F

(9)
7 〈Õ9〉tree + F

(7)
7 〈Õ7〉tree

]
, (22)

with Õ7 = αs

4π
O7 and C̃

(0)
7 = C

(1)
7 . The form factors F

(9)
7 and F

(7)
7 read

F
(9)
7 = −16

3

(
1 +

1

2
ŝ+

1

3
ŝ2 +

1

4
ŝ3

)
, (23)

F
(7)
7 =

32

3
Lµ +

32

3
+ 8 ŝ+ 6 ŝ2 +

128

27
ŝ3 + finf . (24)

Note that for these expressions the pole mass for mb has to be used at lowest order.
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4. Bremsstrahlung Corrections

Finally, we give the result for the renormalized corrections to the matrix elements of O8.
The corresponding diagrams are shown in Fig. 3.2c) and 3.2d). One obtains:

〈s `+`−|C8O8|b〉 = C̃
(0)
8

(
− αs

4π

) [
F

(9)
8 〈Õ9〉tree + F

(7)
8 〈Õ7〉tree

]
, (25)

with C̃
(0)
8 = C

(1)
8 . The form factors F

(9)
8 and F

(7)
8 read (in expanded form)

F
(9)
8 =

104

9
− 32

27
π2 +

(
1184

27
− 40

9
π2

)
ŝ+

(
14212

135
− 32

3
π2

)
ŝ2 (26)

+

(
193444

945
− 560

27
π2

)
ŝ3 +

16

9
Ls
(
1 + ŝ+ ŝ2 + ŝ3

)
,

F
(7)
8 =− 32

9
Lµ +

8

27
π2 − 44

9
− 8

9
iπ +

(
4

3
π2 − 40

3

)
ŝ+

(
32

9
π2 − 316

9

)
ŝ2 (27)

+

(
200

27
π2 − 658

9

)
ŝ3 − 8

9
Ls
(
ŝ+ ŝ2 + ŝ3

)
.

4 Bremsstrahlung Corrections

We stress that in the present Letter only those bremsstrahlung diagrams are taken into
account which are needed to cancel the infrared and collinear singularities from the vir-
tual corrections. All other bremsstrahlung contributions (which are finite), will be given
elsewhere [20].

It is known [11, 12] that the contribution to the inclusive decay width coming from the
interference between the tree-level and the one-loop matrix elements of O9 [Fig. 3.2b)] and
from the corresponding bremsstrahlung corrections [Fig. 3.2f)], can be written in the form

dΓ99

dŝ
=
(αem

4π

)2 G2
F m

5
b,pole |V ∗

tsVtb|
2

48π3
(1− ŝ)2 · (1 + 2 ŝ) ·

(
2
∣∣∣C̃(0)

9

∣∣∣2 αs
π
ω9(ŝ)

)
, (28)

where C̃
(0)
9 = 4π

αs

(
C

(0)
9 + αs

4π
C

(1)
9

)
. The function ω9(ŝ) ≡ ω(ŝ), which contains information

on virtual and bremsstrahlung corrections, can be found in [11, 12]. Replacing C̃
(0)
9 by

C̃
(0,mod)
9 [see Eq. (20)] in Eq. (28), diagram 3.1f) and the corresponding bremsstrahlung

corrections are automatically included.

Similarly, the contribution to the decay width from the interference between the tree-
level and the one-loop matrix element of O7 [Fig. 3.2a)], combined with the corresponding
bremsstrahlung corrections shown in Fig. 3.2e), can be written as

dΓ77

dŝ
=
(αem

4π

)2 G2
F m

5
b,pole |V ∗

tsVtb|
2

48π3
(1− ŝ)2 · 4 (1 + 2/ŝ) ·

(
2
∣∣∣C̃(0)

7

∣∣∣2 αs
π
ω7(ŝ)

)
, (29)
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where C̃
(0)
7 = C

(1)
7 . The function ω7(ŝ), which is new, reads

ω7(ŝ) = −8

3
ln

(
µ

mb

)
− 4

3
Li(ŝ)− 2

9
π2 − 2

3
ln(ŝ) ln(1− ŝ)

− 1

3

8 + ŝ

2 + ŝ
ln(1− ŝ)− 2

3

ŝ (2− 2 ŝ− ŝ2)

(1− ŝ)2 (2 + ŝ)
ln(ŝ)− 1

18

16− 11 ŝ− 17 ŝ2

(2 + ŝ) (1− ŝ)
. (30)

Finally, one observes that also the interference between the tree-level matrix element of
O7 and the one-loop matrix element of O9 (and vice versa) lead to an infrared singular
contribution to the decay width. We combined it with the corresponding bremsstrahlung
terms coming from the interference of diagrams 3.2e) and 3.2f). The result reads

dΓ79

dŝ
=
(αem

4π

)2 G2
F m

5
b,pole |V ∗

tsVtb|
2

48π3
(1− ŝ)2 · 12 ·

(
2 Re

(
C̃

(0)
7 C̃

(0)
9

) αs
π
ω79(ŝ)

)
. (31)

For the function ω79(ŝ), which also is new, we obtain

ω79(ŝ) = −4

3
ln

(
µ

mb

)
− 4

3
Li(ŝ)− 2

9
π2 − 2

3
ln(ŝ) ln(1− ŝ)

− 1

9

2 + 7 ŝ

ŝ
ln(1− ŝ)− 2

9

ŝ (3− 2 ŝ)

(1− ŝ)2 ln(ŝ) +
1

18

5− 9 ŝ

1− ŝ
. (32)

5 Corrections to the Decay Width

In this section we combine the virtual corrections calculated in Section 3 and the brems-
strahlung contributions discussed in Section 4 and study their influence on the decay width
dΓ(b→ s `+`−)/dŝ. In the literature (see eg [13]), this decay width is usually written as

dΓ(B → Xs `
+`−)

dŝ
=
(αem

4π

)2 G2
F m

5
b,pole |V ∗

tsVtb|
2

48π3
(1− ŝ)2

×
[
(1 + 2 ŝ)

(∣∣∣C̃eff
9

∣∣∣2 +
∣∣∣C̃eff

10

∣∣∣2)+ 4 (1 + 2/ŝ)
∣∣∣C̃eff

7

∣∣∣2 + 12 · Re
(
C̃eff

7 C̃
eff∗
9

)]
, (33)

where the contributions calculated so far have been absorbed into the effective Wilson
coefficients C̃eff

7 , C̃eff
9 and C̃eff

10 . It turns out that also the new contributions calculated in
the present paper can be absorbed into these coefficients. Following as closely as possible
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5. Corrections to the Decay Width

µ = 2.5 GeV µ = 5 GeV µ = 10 GeV

αs 0.267 0.215 0.180

C
(0)
1 −0.697 −0.487 −0.326

C
(0)
2 1.046 1.024 1.011(
A

(0)
7 , A

(1)
7

)
(−0.360, 0.031) (−0.321, 0.019) (−0.287, 0.008)

A
(0)
8 −0.164 −0.148 −0.134(
A

(0)
9 , A

(1)
9

)
(4.241, − 0.170) (4.129, 0.013) (4.131, 0.155)(

T
(0)
9 , T

(1)
9

)
(0.115, 0.278) (0.374, 0.251) (0.576, 0.231)(

U
(0)
9 , U

(1)
9

)
(0.045, 0.023) (0.032, 0.016) (0.022, 0.011)(

W
(0)
9 , W

(1)
9

)
(0.044, 0.016) (0.032, 0.012) (0.022, 0.009)(

A
(0)
10 , A

(1)
10

)
(−4.372, 0.135) (−4.372, 0.135) (−4.372, 0.135)

Table 5.1: Coefficients appearing in Eq. (34) for µ = 2.5 GeV, µ = 5 GeV and µ = 10 GeV.
For αs(µ) (in the MS scheme) we used the two-loop expression with 5 flavors and αs(mZ) =
0.119. The entries correspond to the pole top quark mass mt = 174 GeV. The superscript
(0) refers to lowest order quantities and while the superscript (1) denotes the correction
terms of O(αs).

the “parameterization” given recently by Bobeth et al. [13], we write

C̃eff
9 =

(
1 +

αs(µ)

π
ω9(ŝ)

)(
A9 + T9 h(m̂

2
c , ŝ) + U9 h(1, ŝ) +W9 h(0, ŝ)

)
−αs(µ)

4π

(
C

(0)
1 F

(9)
1 + C

(0)
2 F

(9)
2 + A

(0)
8 F

(9)
8

)
, (34)

C̃eff
7 =

(
1 +

αs(µ)

π
ω7(ŝ)

)
A7 −

αs(µ)

4π

(
C

(0)
1 F

(7)
1 + C

(0)
2 F

(7)
2 + A

(0)
8 F

(7)
8

)
,

C̃eff
10 =

(
1 +

αs(µ)

π
ω9(ŝ)

)
A10 ,

where the expressions for h(m̂2
c , ŝ) and ω9(ŝ) are given in [13]. The quantities ω7(ŝ) and

F
(7,9)
1,2,8 , on the other hand, have been calculated in the present paper. We take the numerical

values for A7, A9, A10, T9, U9, and W9 from [13], while C
(0)
1 , C

(0)
2 and A

(0)
8 = C̃

(0,eff)
8 are

taken from [19]. For completeness we list them in Tab. 5.1.

When calculating the decay width (33), we retain only terms linear in αs (and thus in ω9
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and ω7) in |C̃eff
9 |2 and |C̃eff

7 |2. In the interference term Re
(
C̃eff

7 C̃
eff∗
9

)
too, we keep only

terms linear in αs. By construction, one has to make the replacements ω9 → ω79 and
ω7 → ω79 in this term.

Our results include all the relevant virtual corrections and singular bremsstrahlung con-
tributions. There exist additional bremsstrahlung terms coming, eg, from one-loop O1

and O2 diagrams in which both the virtual photon and the gluon are emitted from the
charm quark line. These contributions do not induce additional renormalization scale de-
pendence as they are ultraviolet finite. Using our experience from b → sγ and b → sg,
these contributions are not expected to be large.

6 Numerical Results

The decay width in Eq. (33) has a large uncertainty due to the factor m5
b,pole. Following

common practice, we consider the ratio

Rquark(ŝ) =
1

Γ(b→ Xc e ν̄e)

dΓ(b→ s `+`−)

dŝ
, (35)

in which the factor m5
b,pole drops out. The explicit expression for the semileptonic decay

width Γ(b→ Xc e ν̄e) can be found eg in [13].

We now turn to the numerical results for Rquark(ŝ) for 0.05 ≤ ŝ ≤ 0.25. In Fig. 6.1a)
we investigate the dependence of Rquark(ŝ) on the renormalization scale µ. The solid lines
are obtained by including the new NNLL contributions as explained in detail in Section 5.
The three solid lines correspond to µ = 2.5 GeV (lower line), µ = 5 GeV (middle line)
and µ = 10 GeV (upper line). The three dashed lines (again µ = 2.5 GeV for the lower,
µ = 5 GeV for the middle and µ = 10 GeV for the upper curve), on the other hand, show
the results without the new NNLL corrections, ie they include the NLL results combined
with the NNLL corrections to the matching conditions as obtained by Bobeth et al. [13].
From this figure we conclude that the renormalization scale dependence gets reduced by
more than a factor of 2. Only for small values of ŝ (ŝ ∼ 0.05), where the NLL µ dependence
is small already, the reduction factor is smaller. For the integrated quantity we obtain

Rquark =

0.25∫
0.05

dŝRquark(ŝ) = (1.25± 0.08)× 10−5 , (36)

where the error is obtained by varying µ between 2.5 GeV and 10 GeV. Before our correc-
tions, the result was Rquark = (1.36±0.18)×10−5 [13]. In other words, the renormalization
scale dependence got reduced from ∼ ±13% to ∼ ±6.5%.

Among the errors on Rquark(ŝ) which are due to the uncertainties in the input parameters,
the one induced by m̂c = mc/mb is known to be the largest. We therefore show in Fig. 6.1b)
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Figure 6.1: a) The three solid lines show the µ dependence of Rquark(ŝ) when including the
corrections to the matrix elements calculated in this Letter. The dashed lines are obtained
when switching these corrections off. We set m̂c = 0.29. b) Rquark(ŝ) for m̂c = 0.27 (dashed
line), m̂c = 0.29 (solid line) and m̂c = 0.31 (dash-dotted line) and µ = 5 GeV. See text.

the dependence of Rquark(ŝ) on m̂c. Comparing Fig. 6.1a) with Fig. 6.1b), we find that the
uncertainty due to m̂c is somewhat larger than the left-over µ dependence at the NNLL
level. For the integrated quantity Rquark we find an uncertainty of ±7.6% due to m̂c.

To conclude: We have calculated virtual corrections of O(αs) to the matrix elements of O1,
O2, O7, O8, O9 and O10. We also took into account those bremsstrahlung corrections which
cancel the infrared and collinear singularities in the virtual corrections. The renormaliza-
tion scale dependence of Rquark(ŝ) gets reduced by more than a factor of 2. The calculation
of the remaining bremsstrahlung contributions (which are expected to be rather small) and
a more detailed numerical analysis are in progress [20].
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ABSTRACT

We present in detail the calculation of the virtual O(αs) corrections to
the inclusive semileptonic rare decay b → s `+`−. We also include those
O(αs) bremsstrahlung contributions which cancel the infrared and mass
singularities showing up in the virtual corrections. In order to avoid large
resonant contributions, we restrict the invariant mass squared s of the
lepton pair to the range 0.05 ≤ s/m2

b ≤ 0.25. The analytic results are
represented as expansions in the small parameters ŝ = s/m2

b , z = m2
c/m

2
b

and s/(4m2
c). The new contributions drastically reduce the renormal-

ization scale dependence of the decay spectrum. For the corresponding
branching ratio (restricted to the above ŝ range) the renormalization
scale uncertainty gets reduced from ∼ ±13% to ∼ ±6.5%.
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1 Introduction

Rare B decays are an extremely helpful tool for examining the Standard Model (SM) and
searching for new physics. Within the SM, they provide checks on the one-loop structure
of the theory and allow one to retrieve information on the Cabibbo-Kobayashi-Maskawa
(CKM) matrix elements Vts and Vtd, which cannot be measured directly.

The first measurement of the exclusive rare decay B → K∗γ was obtained in 1992 by
the CLEO collaboration [1]. Somewhat later, also the inclusive transition B → Xsγ was
observed by the same collaboration [2]. Although challenging for the experimentalists, the
inclusive decays are clean from the theoretical point of view, as they are well approximated
by the underlying partonic transitions, up to small and calculable power corrections which
start at O(Λ2

QCD/m
2
b) [3, 4].

The measured photon energy spectrum [5] and the branching ratio for the decay B → Xsγ
[2, 6, 7] are in good agreement with the next-to-leading logarithmic (NLL) Standard Model
predictions (see eg [8]–[14]). Consequently, the decay B → Xsγ places stringent constraints
on the extensions of the SM, such as two-Higgs doublet models [10, 15, 16], supersymmetric
models [17]–[22], etc.

B → Xs `
+`− is another interesting rare decay mode which has been extensively considered

in the literature in the framework of the SM and its extensions (see eg [23]–[28]). This
decay has not been observed so far, but it is expected to be measured at the operating B
factories after a few years of data taking (for upper limits on its branching ratio we refer to
[29, 30]). The measurement of various kinematical distributions of the decay B → Xs `

+`−,
combined with improved data on B → Xsγ, will tighten the constraints on the extensions
of the SM or perhaps even reveal some deviations.

The main problem of the theoretical description of B → Xs `
+`− is due to the long-distance

contributions from c̄c resonant states. When the invariant mass
√
s of the lepton pair is

close to the mass of a resonance, only model dependent predictions for such long distance
contributions are available today. It is therefore unclear whether the theoretical uncertainty
can be reduced to less than ±20% when integrating over these domains [31].

However, restricting
√
s to a region below the resonances, the long distance effects are

under control. The corrections to the pure perturbative picture can be analyzed within the
heavy quark effective theory (HQET). In particular, all available studies indicate that for
the region 0.05 < ŝ = s/m2

b < 0.25 the non-perturbative effects are below 10% [32]–[37].
Consequently, the differential decay rate for B → Xs `

+`− can be precisely predicted in
this region using renormalization group improved perturbation theory. It was pointed out
in the literature that the differential decay rate and the forward-backward asymmetry are
particularly sensitive to new physics in this kinematical window [38]–[40].

Calculations of the next-to-leading logarithmic (NLL) corrections to the process B →
Xs `

+`− have been performed in Refs. [24] and [28]. It turned out that the NLL result
suffers from a relatively large (±16%) dependence on the matching scale µW . To reduce it,
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next-to-next-to leading (NNLL) corrections to the Wilson coefficients have recently been
calculated by Bobeth et al. [41]. This required a two-loop matching calculation of the
effective theory to the full SM theory, followed by a renormalization group evolution of
the Wilson coefficients, using up to three-loop anomalous dimensions [41, 11]. Including
these NNLL corrections to the Wilson coefficients, the matching scale dependence is indeed
removed to a large extent.

As pointed out in Ref. [41], this partially NNLL result suffers from a relatively large (∼
±13%) renormalization scale (µb) dependence [µb ∼ O(mb)] which, interestingly enough, is
even larger than that of the pure NLL result. Recently we showed in a letter [42] that the
NNLL corrections to the matrix elements of the effective Hamiltonian drastically reduce
the renormalization scale dependence. The aim of the current paper is to present a detailed
description of the rather involved calculations and to extend the phenomenological part.
We will discuss in particular the methods which allowed us to tackle with the most involved
part, viz the calculation of the O(αs) two-loop virtual corrections to the matrix elements of
the operators O1 and O2. We also comment on the O(αs) one-loop corrections to O7–O10.
Furthermore, we include those bremsstrahlung contributions which are needed to cancel
the infrared and collinear singularities in the virtual corrections. As shown already in
[42], the new contributions reduce the renormalization scale dependence from ∼ ±13% to
∼ ±6.5%.

The paper is organized as follows: In Section 2 we review the theoretical framework. Our
results for the virtual O(αs) corrections to the matrix elements of the operators O1 and O2

are presented in Section 3, whereas the corresponding corrections to the matrix elements
of O7, O8, O9 and O10 are given in Section 4. Section 5 is devoted to the bremsstrahlung
corrections. The combined corrections (virtual and bremsstrahlung) to b → s `+`− are
discussed in Section 6. Finally, in Section 7, we analyze the invariant mass distribution of
the lepton pair in the range 0.05 ≤ ŝ ≤ 0.25.

2 Effective Hamiltonian

The appropriate framework for studying QCD corrections to rare B decays in a systematic
way is the effective Hamiltonian technique. For the specific decay channels b → s `+`−

(` = µ, e), the effective Hamiltonian is derived by integrating out the heavy degrees of
freedom. In the context of the Standard Model, these are the t quark, the W boson and
the Z0 boson. Because of the unitarity of the CKM matrix, the CKM structure factorizes
when neglecting the combination V ∗

usVub. The effective Hamiltonian then reads

Heff = −4GF√
2
V ∗
tsVtb

10∑
i=1

Ci(µ)Oi(µ) . (1)
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Following Ref. [41], we choose the operator basis as follows:

O1 = (s̄LγµT
acL)(c̄Lγ

µT abL) , O2 = (s̄LγµcL)(c̄Lγ
µbL) ,

O3 = (s̄LγµbL)
∑

q(q̄γ
µq) , O4 = (s̄LγµT

abL)
∑

q(q̄γ
µT aq) ,

O5 = (s̄LγµγνγρbL)
∑

q(q̄γ
µγνγρq) , O6 = (s̄LγµγνγρT

abL)
∑

q(q̄γ
µγνγρT aq) ,

O7 = e
g2s
mb(s̄Lσ

µνbR)Fµν , O8 = 1
gs
mb(s̄Lσ

µνT abR)Ga
µν ,

O9 = e2

g2s
(s̄LγµbL)

∑
l(l̄γ

µl) , O10 = e2

g2s
(s̄LγµbL)

∑
l(l̄γ

µγ5l) ,

(2)

where the subscripts L and R refer to left- and right- handed components of the fermion
fields.

The factors 1/g2
s in the definition of the operators O7, O9 and O10, as well as the factor

1/gs present in O8 have been chosen by Misiak [24] in order to simplify the organization
of the calculation: With these definitions, the one-loop anomalous dimensions [needed
for a leading logarithmic (LL) calculation] of the operators Oi are all proportional to
g2
s , while two-loop anomalous dimensions [needed for a next-to-leading logarithmic (NLL)

calculation] are proportional to g4
s , etc.

After this important remark we now outline the principal steps which lead to a LL, NLL,
NNLL prediction for the decay amplitude for b→ s `+`−:

1. A matching calculation between the full SM theory and the effective theory has
to be performed in order to determine the Wilson coefficients Ci at the high scale
µW ∼ mW ,mt. At this scale, the coefficients can be worked out in fixed order
perturbation theory, ie they can be expanded in g2

s :

Ci(µW ) = C
(0)
i (µW ) +

g2
s

16π2
C

(1)
i (µW ) +

g4
s

(16 π2)2
C

(2)
i (µW ) +O(g6

s) . (3)

At LL order, only C
(0)
i are needed, at NLL order also C

(1)
i , etc. While the coefficient

C
(2)
7 , which is needed for a NNLL analysis, is known for quite some time [9], C

(2)
9 and

C
(2)
10 have been calculated only recently [41] (see also [43]).

2. The renormalization group equation (RGE) has to be solved in order to get the
Wilson coefficients at the low scale µb ∼ mb. For this RGE step the anomalous
dimension matrix to the relevant order in gs is required, as described above. After
these two steps one can decompose the Wilson coefficients Ci(µb) into a LL, NLL
and NNLL part according to

Ci(µb) = C
(0)
i (µb) +

g2
s(µb)

16π2
C

(1)
i (µb) +

g4
s(µb)

(16 π2)2
C

(2)
i (µb) +O(g6

s) . (4)
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3. In order to get the decay amplitude, the matrix elements 〈s `+`−|Oi(µb)|b〉 have to
be calculated. At LL precision, only the operator O9 contributes, as this operator
is the only one which at the same time has a Wilson coefficient starting at lowest
order and an explicit 1/g2

s factor in the definition. Hence, at NLL precision, QCD
corrections (virtual and bremsstrahlung) to the matrix element of O9 are needed.
They have been calculated a few years ago [24, 28]. At NLL precision, also the other
operators start contributing, viz O7(µb) and O10(µb) contribute at tree-level and the
four-quark operators O1, ..., O6 at one-loop level. Accordingly, QCD corrections to
the latter matrix elements are needed for a NNLL prediction of the decay amplitude.

The formally leading term ∼ (1/g2
s)C

(0)
9 (µb) to the amplitude for b → s `+`− is smaller

than the NLL term ∼ (1/g2
s)
[
g2
s/(16π

2)
]
C

(1)
9 (µb) [23]. We adapt our systematics to the

numerical situation and treat the sum of these two terms as a NLL contribution. This is,
admittedly some abuse of language, because the decay amplitude then starts out with a
term which is called NLL.

As pointed out in step 3), O(αs) QCD corrections to the matrix elements 〈s `+`−|Oi(µb)|b〉
have to be calculated in order to obtain the NNLL prediction for the decay amplitude. In
the present paper we systematically evaluate virtual corrections of O(αs) to the matrix
elements of O1, O2, O7, O8, O9 and O10. As the Wilson coefficients of the gluonic penguin
operators O3, ..., O6 are much smaller than those of O1 and O2, we neglect QCD corrections
to their matrix elements. As discussed in more detail later, we also include those brems-
strahlung diagrams which are needed to cancel the infrared and collinear singularities from
the virtual contributions. The complete bremsstrahlung corrections, ie all the finite parts,
will be given elsewhere [44]. We anticipate that the QCD corrections calculated in the
present paper substantially reduce the scale dependence of the NLL result.

3 Virtual O(αs) Corrections to the Current-Current

Operators O1 and O2

In this section we present a detailed calculation of the virtual O(αs) corrections to the
matrix elements of the current-current operators O1 and O2. Using the naive dimensional
regularization scheme (NDR) in d = 4 − 2 ε dimensions, both ultraviolet and infrared
singularities show up as 1/εn poles (n = 1, 2). The ultraviolet singularities cancel after
including the counterterms. Collinear singularities are regularized by retaining a finite
strange quark mass ms. They are cancelled together with the infrared singularities at the
level of the decay width, taking the bremsstrahlung process b → s `+`−g into account.
Gauge invariance implies that the QCD corrected matrix elements of the operators Oi can
be written as

〈s `+`−|Oi|b〉 = F̂
(9)
i 〈O9〉tree + F̂

(7)
i 〈O7〉tree , (5)
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Figure 3.1: Complete list of two-loop Feynman diagrams for b → sγ∗ associated with the
operators O1 and O2. The fermions (b, s and c quarks) are represented by solid lines,
whereas the curly lines represent gluons. The circle-crosses denote the possible locations
where the virtual photon (which then splits into a lepton pair) is emitted.

where 〈O9〉tree and 〈O7〉tree are the tree-level matrix elements of O9 and O7, respectively.
Equivalently, we may write

〈s `+`−|Oi|b〉 = − αs
4π

[
F

(9)
i 〈Õ9〉tree + F

(7)
i 〈Õ7〉tree

]
, (6)

where the operators Õ7 and Õ9 are defined as

Õ7 =
αs
4π

O7 , Õ9 =
αs
4π

O9 . (7)

We present the final results for the QCD corrected matrix elements in the form of Eq. (6).

3.1 Regularized O(αs) Contribution of O1 and O2

The full set of the diagrams contributing to the matrix elements

Mi = 〈s `+`−|Oi|b〉 (i = 1, 2) (8)

at O(αs) is shown in Fig. 3.1. As indicated in this figure, the diagrams associated with
O1 and O2 are topologically identical. They differ only by the color structure. While the
matrix elements of the operator O2 all involve the color structure

∑
a

T aT a = CF1, CF =
N2
c − 1

2Nc

, (9)
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there are two possible color structures for the corresponding diagrams of O1, viz

τ1 =
∑
a,b

T aT bT aT b and τ2 =
∑
a,b

T aT bT bT a. (10)

The structure τ1 appears in diagrams 3.1a)-d) and τ2 in diagrams 3.1e) and 3.1f). Using
the relation

∑
a

T aαβT
a
γδ = − 1

2Nc

δαβδγδ +
1

2
δαδδβγ,

we find that τ1 = Cτ11 and τ2 = Cτ21 with

Cτ1 = −N
2
c − 1

4N2
c

and Cτ2 =
(N2

c − 1)
2

4N2
c

.

Inserting Nc = 3, the color factors are CF = 4
3
, Cτ1 = −2

9
and Cτ2 = 16

9
. The contributions

from O1 are obtained by multiplying those from O2 by the appropriate factors, ie by
Cτ1/CF = −1

6
and Cτ2/CF = 4

3
, respectively. In the following descriptions of the individual

diagrams we therefore restrict ourselves to those associated with the operator O2.

In the current paper we use the MS renormalization scheme which is technically imple-
mented by introducing the renormalization scale in the form µ 2 = µ2 exp(γE)/(4π), fol-
lowed by minimal subtraction. The precise definition of the evanescent operators, which is
necessary to fully specify the renormalization scheme, will be given later. The remainder
of this section is divided into 8 subsections. Subsections 3.1.1–3.1.6 deal with the diagrams
3.1a)–d) which are calculated by means of Mellin-Barnes techniques [45]. Subsection 3.1.7
is devoted to the diagrams 3.1e), which are evaluated by using the heavy mass expansion
procedure [46]. Among the diagrams 3.1f) only the one where the virtual photon is emit-
ted from the charm quark line is non-zero. As it factorizes into two one-loop diagrams, its
calculation is straightforward and does not require to be discussed in detail. It is, how-
ever, worth mentioning already at this point that it is convenient to omit this diagram in
the discussion of the matrix elements of O1 and O2 and to take it into account together
with the virtual corrections to O9. Finally, in Subsection 3.1.8, we give the results for the
dimensionally regularized matrix elements 〈s `+`−|Oi|b〉 (i = 1, 2).

3.1.1 The Building Blocks Iβ and Jαβ

For the calculation of diagrams 3.1a)–d) it is advisable to evaluate the building blocks
Iβ and Jαβ first. The corresponding diagrams are depicted in Fig. 3.2. After performing
a straightforward Feynman parameterization followed by the integration over the loop
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Figure 3.2: The building blocks Iβ and Jαβ which are used for the calculation of the two-loop
diagrams 3.1a)-d). The curly and wavy lines represent gluons and photons, respectively.

momentum, the analytic expression for the building block Iβ reads

Iβ = − gs
4π2

Γ(ε)µ2ε eγEε (1− ε) eiπε
(
rβr/− r2γβ

)
L
λ

2

×
∫ 1

0

dx
[
x(1− x)

]1−ε [
r2 − m2

c

x(1− x)
+ i δ

]−ε
, (11)

where r is the momentum of the virtual gluon emitted from the c-quark loop. The term i δ
is the “i ε prescription”. In the full two-loop diagrams, the free index β will be contracted
with the corresponding gluon propagator. Note that Iβ is gauge invariant in the sense that
rβIβ = 0.

The building block Jαβ is somewhat more complicated. Using the notation introduced by
Simma and Wyler [47], it reads

Jαβ =
e gsQu

16π2

[
E(α, β, r)∆i5 + E(α, β, q)∆i6 − E(β, r, q)

rα
q ·r

∆i23

−E(α, r, q)
rβ
q ·r

∆i25 − E(α, r, q)
qβ
q ·r

∆i26 − E(β, r, q)
qα
q ·r

∆i27

]
L
λ

2
, (12)

where q and r denote the momenta of the (virtual) photon and gluon, respectively. The
indices α and β will be contracted with the propagators of the photon and the gluon,
respectively. The matrix E(α, β, r) is defined as

E(α, β, r) =
1

2
(γαγβr/− r/γβγα) (13)
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and the dimensionally regularized quantities ∆ik occurring in Eq. (12) read

∆i5 = 4B+

∫
S

dx dy
[
4(q ·r)x y (1− x)ε+ r2 x (1− x)(1− 2x)ε

+q2 y(2− 2 y + 2x y − x)ε+ (1− 3x)C
]
C−1−ε ,

∆i6 = 4B+

∫
S

dx dy
[
−4(q ·r)x y (1− y)ε− q2 y (1− y)(1− 2 y)ε

−r2 x (2− 2x+ 2x y − y)ε− (1− 3 y)C
]
C−1−ε ,

∆i23 = −∆i26 = 8B+(q ·r)
∫
S

dx dy x y εC−1−ε ,

∆i25 = −8B+(q ·r)
∫
S

dx dy x (1− x) ε C−1−ε ,

∆i27 = 8B+(q ·r)
∫
S

dx dy y (1− y) ε C−1−ε , (14)

where B+ = (1 + ε)Γ(ε) eγEεµ2ε and C is given by

C = m2
c − 2x y(q ·r)− r2 x (1− x)− q2 y (1− y).

The integration over the Feynman parameters x and y is restricted to the simplex S, ie
y ∈ [0, 1− x], x ∈ [0, 1]. Due to Ward identities, the quantities ∆ik are not independent of
one another. Namely,

qαJαβ = 0 and rβJαβ = 0

imply that ∆i5 and ∆i6 can be expressed as

∆i5 = ∆i23 +
q2

q ·r
∆i27 ; ∆i6 =

r2

q ·r
∆i25 + ∆i26. (15)

3.1.2 General Remarks

After inserting the above expressions for the building blocks Iβ and Jαβ into diagrams
3.1a), b) and 3.1c), d), respectively, and introducing additional Feynman parameters, we
can easily perform the integration over the second loop momentum. The remaining Feyn-
man parameter integrals are, however, non-trivial. In Refs. [12] and [48], where the anal-
ogous corrections to the processes b → sγ and b → sg were studied, the strategy used to
evaluate these integrals is the following:

• The denominators are represented as complex Mellin-Barnes integrals (see below and
Refs. [12, 48]).
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• After interchanging the order of integration and appropriate variable transformations,
the Feynman parameter integrals reduce to Euler β and Γ functions.

• Finally, by Cauchy’s theorem the remaining complex integral over the Mellin variable
can be written as a sum over residues taken at certain poles of β and Γ functions.
This leads in a natural way to an expansion in the small ratio z = m2

c/m
2
b .

However, this procedure cannot be applied directly in the present case: While the processes
b → sγ and b → sg are characterized by the two mass scales mb and mc, a third mass
scale, viz q2, the invariant mass squared of the lepton pair, enters the process b→ s `+`−.
For values of q2 satisfying

q2

m2
b

< 1 and
q2

4m2
c

< 1,

most of the diagrams allow a naive Taylor series expansion in q2 and the dependence of
the charm quark mass can again be calculated by means of Mellin-Barnes representations.
This method does not work, however, for the diagram in Fig. 3.1a) where the photon is
emitted from the internal s quark line. Instead, we apply a Mellin-Barnes representation
twice, as we discuss in detail in Subsection 3.1.4. Using these methods, we get the results
for diagrams 3.1a)–d) as an expansion in ŝ = q2/m2

b , z = m2
c/m

2
b and ŝ/(4 z) as well as

ln(ŝ) and ln(z). This implies that our results are meaningful only for small values of ŝ.
Fortunately, this is exactly the range of main theoretical and experimental interest in the
phenomenology of the process b→ s `+`−.

3.1.3 Calculation of Diagram 3.1b)

We describe the basic steps of our calculation of the diagram in Fig. 3.1b) where the photon
is emitted from the internal b quark line. Our notations for the momenta are set up in
Fig. 3.3a). Inserting the building block Iβ yields the following analytic expression for this
diagram:

M2[1b] =
i eQd g

2
s

4π2
CF Γ(ε)e2γEεµ4ε(1− ε) eiπε(4π)−ε

1∫
0

dx

[
x(1− x)

]1−ε[
r2 −m2

c/[x(1− x)] + iδ
]ε∫

ddr

(2π)d
ū(p′)

(
rβr/− r2γβ

)
L

p′/+ r/+mb

(p′ + r)2 −m2
b

γα
p/+ r/+mb

(p+ r)2 −m2
b

γβ u(p) · 1

r2
. (16)

Applying a Feynman parameterization according to

1

D1D2D3Dε
4

=
Γ(3 + ε)

Γ(ε)

∫
S

du dv dy yε−1[
uD1 + vD2 + (1− u− v − y)D3 + yD4

]3+ε , (17)

with

D1 = (p′ + r)2 −m2
b , D2 = (p+ r)2 −m2

b , (18)

D3 = r2, D4 = r2 −m2
c/[x(1− x)], (19)
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Figure 3.3: a) Momentum flow in diagram 3.1b), where the virtual photon is emitted from
the internal b quark line (see Subsection 3.1.3); b) Momentum flow in the vertex correction
diagram in Fig. 3.1e) (see Subsection 3.1.7).

and performing the integral over the loop momentum r, we obtain

M2[1b] = −eQd g
2
s

64π4
(1− ε)CF Γ(2ε)e2γEεµ4ε×

1∫
0

dx
[
x(1− x)

]1−ε ∫
S

dv du dy yε−1 ū(p′)

[
P1

∆1+2ε
b

+
P2

∆2ε
b

+
P3 ∆b

∆2ε
b

]
u(p) , (20)

where the Feynman parameters u, v and y run over the simplex S, i.e u, v, y > 0 and
u+v+y ≤ 1. P1, P2 and P3 are polynomials in the Feynman parameters, and the quantity
∆b reads

∆b = m2
b(u+ u v + v2)− q2 u v +

m2
c y

x(1− x)
.

For q2 ≤ m2
b it is positive in the integration region. Therefore, one is allowed to do a naive

Taylor series expansion of the integrand in q2. In order to simplify the resulting Feynman
parameter integrals, it is convenient to first transform the integration variables x, y, u and
v according to

u→ (1− v′)(−1 + v′ + u′)

v′
, v → (1− v′)(1− u′)

v′
, x→ x′, y → y′v′.

The integration region of the new variables is given by u′ ∈ [1− v′, 1] and v′, x′, y′ ∈ [0, 1].
Taking the corresponding Jacobian into account and omitting primes in order to simplify
the notation, we find

M2[1b] = −eQd g
2
s

64π4
(1− ε)CF Γ(2ε) e2γEεµ4ε×

1∫
0

dx
[
x(1− x)

]1−ε 1∫
0

dv

1∫
1−v

du

1∫
0

dy (v y)ε−1 (1− v) ū(p′)

[
Q1

∆1+2ε
b

+
Q2

∆2ε
b

+
Q3∆b

∆2ε
b

]
u(p) , (21)
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where, in terms of the new variables, ∆b reads

∆b = m2
b(1− v)u+ q2 (1− v)2(1− v − u)(1− u)

v2
+m2

c

v y

x(1− x)
.

Q1, Q2 and Q3 are rational functions in the new Feynman parameters. After performing
the Taylor series expansion in q2, the remaining integrals are of the form

1∫
0

dx dv dy

1∫
1−v

du
[
x(1− x)

]1−ε
(v y)ε−1(1− v)

1

vm
P (x, y, u, v)

∆ n+2ε
b,0

, (22)

where P (x, y, u, v) is a polynomial in x, y, u and v; ∆b,0 = ∆b(q
2 = 0). n and m are

non-negative integers. We further follow the strategy used in [12, 48] and represent the
denominators ∆λ

b,0 as Mellin-Barnes integrals. The Mellin-Barnes representation for (K2−
M2)−λ reads (λ > 0)

1

(K2 −M2)λ
=

1

(K2)λ
1

Γ(λ)

1

2 iπ

∫
γ

ds

(
−M

2

K2

)s
Γ(−s) Γ(λ+ s) . (23)

The integration path γ runs parallel to the imaginary axis and intersects the real axis
somewhere between −λ and 0. The Mellin-Barnes representation of ∆λ

b,0 is obtained by
making the identifications

K2 ↔ m2
b u(1− v) and M2 ↔ −m2

c y v/[x(1− x)].

Interchanging the order of integration, it is now an easy task to perform the Feynman
parameter integrals since the most complicated ones are of the form

1∫
0

da ap(s)(1− a)q(s) = β
(
p(s) + 1, q(s) + 1

)
. (24)

The integration path γ has to be chosen in such a way that the Feynman parameter
integrals exist for values of s ∈ γ. By inspection of the explicit expressions, one finds that
this is the case if the path γ is chosen such that Re(s) > −ε. (Note that in this paper ε
is always a positive number). To perform the integration over the Mellin parameter s, we
close the integration path in the right half-plane and use the residue theorem to identify
the integral with the sum over the residues of the poles located at

s = 0, 1, 2, 3, . . . ,

s = 1− ε, 2− ε, 3− ε, . . . ,

s = 1− 2ε, 2− 2ε, 3− 2ε, . . . ,

s = 1/2− 2ε, 3/2− 2ε, 5/2− 2ε, . . . . (25)
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In view of the factor (m2
c/m

2
b)
s, stemming from the Mellin-Barnes formula (23), the eval-

uation of the residues at the pole positions listed in Eq. (25) corresponds directly to an
expansion in z = m2

c/m
2
b . Note that closing the integration contour in the right half-plane

yields an overall minus sign due to the clockwise orientation of the integration path. After
expanding in ε, we get the form factors of M2[1b] [see Eq. (6)] as an expansion of the form

F
(7,9)
2 [1b] =

∑
i,l,m

c
(7,9)
2,ilm ŝ

i zl lnm(z), (26)

where i and m are non-negative integers and l is a natural multiple of 1
2

[see Eq. (25)].
Furthermore, the power m of ln(z) is bounded by four, independent of the values of i and
l. This becomes clear if we consider the structure of the poles. There are three poles in
s located near any natural number k, viz at s = k, s = k − ε and s = k − 2ε. Taking
the residue at one of them yields a term proportional to 1/ε2 from the other two poles.
In addition, there can be an explicit 1/ε2 term from the integration over the two loop
momenta. Therefore, the most singular term can be of order 1/ε4 and, after expanding in
ε, the highest possible power of ln(z) is four.

3.1.4 Calculation of Diagram 3.1a)

To calculate the diagram in Fig. 3.1a) where the photon is emitted from the internal
s quark, we proceed in a similar way as in the previous subsection, ie we insert the build-
ing block Iβ, introduce three additional Feynman parameters and integrate over the loop
momentum r. The characteristic denominator ∆a is of the form

∆a =
(
Am2

b +B q2 + C m2
c + i δ

)
and occurs with powers 2ε or 1 + 2ε. The coefficients A, B and C are functions of the
Feynman parameters. After suitable transformations, they read

A = u v(1− v), B = u v2(1− u), C = − y(1− v)

x(1− x)
,

with u, v, x, y ∈ [0, 1]. From this we conclude that the result of this diagram is not
analytic in q2. We are therefore not allowed to Taylor expand the integrand. Instead, we
apply the Mellin-Barnes representation twice and write

1

∆λ
a

=
1

(B q2)λ

∫
γ

ds

∫
γ′
ds′

Γ(s+ λ) Γ(−s′) Γ(s′ − s) eiπs
′

(2 iπ)2 Γ(λ)

[
Am2

b

B q2

]s [
−C m

2
c

Am2
b

]s′
. (27)

The integration paths γ and γ′ are again parallel to the imaginary axis and −λ < Re(s) <
Re(s′) < 0. λ takes one of the two values 2ε and 1 + 2ε. We have written Eq. (27) in such
a way that non-integer powers appear only for positive numbers, ie we made use of the
formula

(x± i δ)α = e±iπα(−x∓ i δ)α .
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As in the preceding subsection, the exact positions of the integration paths γ and γ′ are
dictated by the condition that the Feynman parameter integrals exist for values of s and
s′ lying thereon. For λ = 2ε, we find that these integrals exist if

−ε < Re(s) < Re(s′) < 0.

Closing the integration contour for the s and s′ integration in the left and right half-plane,
respectively, and applying the residue theorem results in an expansion in ŝ and z. As
Re(s′) > Re(s), the term Γ(s′− s) in Eq. (27) does not generate any poles. For λ = 2ε, the
poles which have to be taken into account are located at

s′ = 1− ε, 2− ε, 3− ε, . . . , s = −ε, − 1− ε, − 2− ε, . . . ,

s′ = 1− 2ε, 2− 2ε, 3− 2ε, . . . , s = −2ε, − 1− 2ε, − 2− 2ε, . . . ,

s′ = 0, 1, 2, . . . .

For λ = 1 + 2ε, we find that the Feynman parameter integrals exist if

−ε < Re(s′) < 0 and − 1− ε < Re(s) < −2ε.

This condition implies that the poles at s = −ε,−2ε in the above list must not be taken
into account when applying the residue theorem.

The final result for the form factors [Eq.(6)] of this diagram is of the form

F
(7,9)
2 [1a] =

∑
i,j,l,m

c
(7,9)
i,j,l,m ŝ

i lnj(ŝ) zl lnm(z), (28)

where i, j, l and m all are non-negative integers. The remaining four diagrams in Fig. 3.1a)
and b) exhibit no further difficulties.

3.1.5 Calculation of Diagrams 3.1c)

Inserting the building block Jαβ allows us to calculate directly the sum of the two diagrams
shown in Fig. 3.1c). After performing the second loop integral, one obtains

M2[1c] =
eQu g

2
s CF

256π4
(1 + ε) Γ(2ε) e2γEεµ4εe2iπε∫

dx dy du dv
vε(1− u)1+ε(1− x)[

x(1− x)
]1+ε ū(p′)

[
P1

∆1+2ε
c

+
P2

∆2ε
c

+
P3 ∆c

∆2ε
c

]
u(p) , (29)

where P1, P2 and P3 are polynomials in the Feynman parameters, which all run in the
interval [0,1]. ∆c reads [using v′ = v(1− u)]

∆c = m2
b u v

′ y − q2 y v′ (u+ y v′)− v′

x(1− x)

{
m2
c − q2 y(1− x)

[
1− y(1− x)

]}
.
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Note that we do not expand in q2 at this stage of the calculation. Instead, we use the
Mellin-Barnes representation (23) with the identification

K2 ↔ m2
b u v

′ y and M2 ↔ q2 y v′ (u+ y v′)+
v′

x(1− x)

{
m2
c− q2 y(1−x)

[
1−y(1−x)

]}
.

This representation does a good job, since (−M2/K2)
s

turns out to be analytic in q2 for
ŝ < 4 z, as in this range M2/K2 is positive for all values of the Feynman parameters. We
therefore do the Taylor expansion with respect to q2 only at this level. Evaluating the
Feynman parameter integrals as well as the Mellin-Barnes integral, we find the result as
an expansion in z and ŝ/(4 z) which can be cast into the general form

F
(7,9)
2 [1c] =

∑
i,l,m

c
(7,9)
2,ilm ŝ

i zl lnm(z), (30)

where i and m are non-negative integers and l = −i,−i+ 1
2
,−i+ 1, . . . .

3.1.6 Calculation of Diagrams 3.1d)

After inserting the building block Jαβ and performing the second loop integral, the sum of
the diagrams in Fig. 3.1d) yields

M2[1d] =
eQu g

2
s CF

256π4
(1 + ε) Γ(2ε) e2γEεµ4ε∫

S

dx dy

∫
S

du dv
vε[

x(1− x)
]1+ε ū(p

′)

[
P1

∆1+2ε
d

+
P2

∆2ε
d

+
P3 ∆d

∆2ε
d

]
u(p) , (31)

where P1, P2 and P3 are polynomials in the Feynman parameters x, y, u and v. The
parameters (x, y) and (u, v) run in their respective simplex. The quantity ∆d reads

∆d = m2
b u

(
u+

y v

1− x

)
+ q2 y v

[
y v

(1− x)2
+

u

1− x
− (1− y)

x(1− x)

]
+

m2
c v

x(1− x)
.

Next, we use the Mellin-Barnes representation (23) with the identification

K2 ↔ m2
b u

(
u+

y v

1− x

)
, M2 ↔ q2 y v

[
y v

(1− x)2
+

u

1− x
− (1− y)

x(1− x)

]
+

m2
c v

x(1− x)
.

Again, (−M2/K2)
s

is analytic in q2 for ŝ < 4 z, which allows us to perform a Taylor
series expansion with respect to q2. In order to perform the integrations over the Feynman
parameters, we make suitable substitutions, eg

x→ x′, y →
(1− x′)

[
y′ − (1− v′)

]
v′

, v → u′v′, u→ u′(1− v′). (32)
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The new variables x′, u′, v′ run in the interval [0, 1], while y′ varies in [1−v′, 1]. Evaluating
the integrals over the Feynman and Mellin parameters, we find the result as an expansion
in z and ŝ/(4 z) which can be cast into the general form

F
(7,9)
2 [1d] =

∑
i,l,m

c
(7,9)
2,ilm ŝ

i zl lnm(z). (33)

i and m are non-negative integers and l = −i,−i+ 1
2
,−i+ 1, . . . .

3.1.7 Calculation of Diagram 3.1e)

We consider one of the diagrams in Fig. 3.1e) in some detail and redraw it in Fig. 3.3b).
The matrix element is proportional to 1/∆e, where

∆e =
[
(l − r)2 −m2

c

] [
(l − q − r)2 −m2

c

] [
(l − q)2 −m2

c

] [
l2 −m2

c

]
r2. (34)

q is the four-momentum of the off-shell photon, while l and r denote loop momenta. As
q2 < 4m2

c in our application, we use the heavy mass expansion (HME) technique [46]
to evaluate this diagram. In the present case, as the gluon is massless, the HME boils
down to a naive Taylor series expansion of the diagram (before loop integrations) in the
four-momentum q. Expanding 1/∆e in q, we obtain

1

∆e

=
∑

n,m,i,j,k

Ce(n,m, i, j, k)
(q2)i (q · r)j (q · l)k

r2
[
l2 −m2

c

]n [
(l − r)2 −m2

c

]m . (35)

Using the Feynman parameterization

1[
l2 −m2

c

]n [
(l − r)2 −m2

c

]m =
Γ(n+m)

Γ(n) Γ(m)

1∫
0

dv
vm−1(1− v)n−1[

l2 − 2 v(l · r)−m2
c + v r2

]n+m , (36)

we can perform the integration over the loop momentum l. The integral over the loop
momentum r can be done using the parameterization

1

r2

(
1

r2 − m2
c

v(1−v)

)p

=
Γ(1 + p)

Γ(p)

1∫
0

up−1(
r2 − um2

c

v(1−v)

)p+1 du . (37)

The remaining integrals over the Feynman parameters u and v all have the form of Eq. (24)
and can be performed easily. The other two diagrams in Fig. 3.1e) where the virtual photon
is emitted from the charm quark can be evaluated in a similar way. The diagrams where
the photon is radiated from the b quark or the s quark vanish.
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As the results for the sum of all the diagrams in Fig. 3.1e) are compact, we explicitly give

their contribution to the form factors F
(j)
a (a = 1, 2; j = 7, 9). We obtain F

(7)
a [1e] = 0,

F
(9)
1 [1e] = 4

3
F

(9)
2 [1e] and

F
(9)
2 [1e] =

(
µ

mc

)4ε
1

ε

[
8

3
+

128

45

(
ŝ

4 z

)
+

256

105

(
ŝ

4 z

)2

+
2048

945

(
ŝ

4 z

)3
]

−

[
124

27
+

12416

3645

(
ŝ

4 z

)
+

11072

42525

(
ŝ

4 z

)2

− 4971776

4465125

(
ŝ

4 z

)3
]
. (38)

3.1.8 Unrenormalized Form Factors of O1 and O2

We stress that the diagram 3.1f) where the virtual photon is emitted from the charm quark
line is the only one in Fig. 3.1 which suffers from infrared and collinear singularities. As this
diagram can easily be combined with diagram 4.1b) associated with the operator O9, we
take it into account only in Section 4.1, where the virtual corrections to O9 are discussed.

The unrenormalized form factors F
(7,9)
a of 〈s `+`−|Oa|b〉 (a = 1, 2), corresponding to dia-

grams 3.1a)–3.1e), are obtained in the form

F (7,9)
a =

∑
i,j,l,m

c
(7,9)
a,ijlm ŝ

i lnj(ŝ) zl lnm(z),

where i, j andm are non-negative integers and l = −i,−i+ 1
2
,−i+1, . . . .We keep the terms

with i and l up to 3, after checking that higher order terms are small for 0.05 ≤ ŝ ≤ 0.25,
the range considered in this paper. As we will give the full results for the counterterm
contributions to the form factors in Section 3.2 and the renormalized form factors in Sec-
tion 3.3 and in Appendix B, it is not necessary to explicitly present the somewhat lengthy
expressions for the unrenormalized form factors. But, in order to demonstrate the can-
cellation of ultraviolet singularities in the next section, we list the divergent parts of the
unrenormalized form factors: F

(7)
1 , F

(9)
1 , F

(7)
2 and F

(9)
2 :

F
(9)
2,div =

128

81 ε2
− 4

25515 ε

(
1890 + 1260 iπ + 5040Lµ − 1260Ls + 252 ŝ+ 27 ŝ2 + 4 ŝ3

)
+

8

2835 ε

[
420 + 2520Lµ − 1260Lz + 2016

(
ŝ

4 z

)
+ 1296

(
ŝ

4 z

)2

+ 1024

(
ŝ

4 z

)3
]
,

F
(7)
2,div =

92

81 ε
, (39a)
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F
(9)
1,div = − 64

243 ε2
+

2

76545 ε

(
1890 + 1260 iπ + 5040Lµ − 1260Ls + 252 ŝ+ 27 ŝ2 + 4 ŝ3

)
− 4

8505 ε

[
−8085 + 2520Lµ − 1260Lz − 7056

(
ŝ

4 z

)
− 6480

(
ŝ

4 z

)2

− 5888

(
ŝ

4 z

)3
]
,

F
(7)
1,div = − 46

243 ε
, (39b)

where Ls = ln(ŝ), Lz = ln(z), Lµ = ln
(

µ
mb

)
and z = m2

c

m2
b
.

3.2 O(αs) Counterterms to O1 and O2

So far, we have calculated the two-loop matrix elements 〈s `+`−|CiOi|b〉 (i = 1, 2). As the
operators mix under renormalization, there are additional contributions proportional to
Ci. These counterterms arise from the matrix elements of the operators

12∑
j=1

δZijOj , i = 1, 2, (40)

where the operators O1–O10 are given in Eq. (2). O11 and O12 are evanescent operators,
ie operators which vanish in d = 4 dimensions. In principle, there is some freedom in
the choice of the evanescent operators. However, as we want to combine our matrix ele-
ments with the Wilson coefficients calculated by Bobeth et al. [41], we must use the same
definitions:

O11 = (s̄LγµγνγσT
acL) (c̄Lγ

µγνγσT abL)− 16O1 , (41)

O12 = (s̄LγµγνγσcL) (c̄Lγ
µγνγσbL)− 16O2 . (42)

The operator renormalization constants Zij = δij + δZij are of the form

δZij =
αs
4π

(
a01
ij +

1

ε
a11
ij

)
+

α2
s

(4π)2

(
a02
ij +

1

ε
a12
ij +

1

ε2
a22
ij

)
+O(α3

s). (43)

Most of the coefficients almij needed for our calculation are given in Ref. [41]. As some are
new (or not explicitly given in [41]), we list those for i = 1, 2 and j = 1, ..., 12:

â11 =

 −2 4
3

0 −1
9

0 0 0 0 −16
27

0 5
12

2
9

6 0 0 2
3

0 0 0 0 −4
9

0 1 0

 , (44a)
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a12
17 = − 58

243
, a12

19 = − 64
729

, a22
19 = 1168

243
,

a12
27 = 116

81
, a12

29 = 776
243

, a22
29 = 148

81
.

(44b)

We denote the counterterm contributions to b→ s `+`− which are due to the mixing of O1

or O2 into four-quark operators by F
ct(7)
i→4quark and F

ct(9)
i→4quark. They can be extracted from

the equation

∑
j

( αs
4π

) 1

ε
a11
ij 〈s `+`−|Oj|b〉1-loop = −

( αs
4π

) [
F

ct(7)
i→4quark〈Õ7〉tree + F

ct(9)
i→4quark〈Õ9〉tree

]
, (45)

where j runs over the four-quark operators. As certain entries of â11 are zero, only the
one-loop matrix elements of O1, O2, O4, O11 and O12 are needed. In order to keep the
presentation transparent, we relegate their explicit form to Appendix A.

The counterterms which are related to the mixing of Oi (i = 1, 2) into O9 can be split into
two classes: The first class consists of the one-loop mixing Oi → O9, followed by taking
the one-loop corrected matrix element of O9. It is obvious that this class contributes
to the renormalization of diagram 3.1f). As we decided to treat diagram 3.1f) only in
Section 4.1 (when discussing virtual corrections toO9), we proceed in the same way with the
counterterm just mentioned. There is, however, a second class of counterterm contributions
due to Oi → O9 mixing. These contributions are generated by two-loop mixing of O2

into O9 as well as by one-loop mixing and one-loop renormalization of the gs factor in the
definition of the operator O9. We denote the corresponding contribution to the counterterm
form factors by F

ct(7)
i→9 and F

ct(9)
i→9 . We obtain

F
ct(9)
i→9 = −

(
a22
i9

ε2
+
a12
i9

ε

)
− a11

i9 β0

ε2
, F

ct(7)
i→9 = 0, (46)

where we made use of the renormalization constant Zgs given by

Zgs = 1− αs
4π

β0

2

1

ε
, β0 = 11− 2

3
Nf , Nf = 5. (47)

Besides the contribution from operator mixing, there are ordinary QCD counterterms. The
renormalization of the charm quark mass is taken into account by replacing mc through
Zmc ·mc in the one-loop matrix elements of O1 and O2 (see Appendix A). We denote the

corresponding contribution to the counterterm form factors by F
ct(7)
i,mcren

and F
ct(9)
i,mcren

. We
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obtain

F
ct(7)
1,mcren =F

ct(7)
2,mcren = 0,

F
ct(9)
1,mcren =

4

3
F

ct(9)
2,mcren ,

F
ct(9)
2,mcren =− 32

945 ε

[
105 + 84

(
ŝ

4 z

)
+ 72

(
ŝ

4 z

)2

+ 64

(
ŝ

4 z

)3
]

− 32

2835

[
105 + 1260 ln

µ

mc

+

(
ŝ

4 z

)(
336 + 1008 ln

µ

mc

)
+

(
ŝ

4 z

)2(
396 + 864 ln

µ

mc

)
+

(
ŝ

4 z

)3(
416 + 768 ln

µ

mc

)]
, (48)

where we have used the pole mass definition of mc which is characterized by the renormal-
ization constant

Zm = 1− αs
4π

4

3

[
3

ε
+ 6 ln

( µ
m

)
+ 4

]
. (49)

If one wishes to express the results for F
ct(9)
i,mcren

in terms of the MS definition of the charm
quark mass, the expressions in Eqs. (48) get changed according to

F
ct(9)
i,mcren

→ F
ct(9)
i,mcren

+ ∆F
ct(9)
i,mcren

, (50)

where ∆F
ct(9)
i,mcren

reads

∆F
ct(9)
1,mcren =

4

3
∆F

ct(9)
2,mcren , (51)

∆F
ct(9)
2,mcren =

64

945

[
105 + 84

(
ŝ

4 z

)
+ 72

(
ŝ

4 z

)2

+ 64

(
ŝ

4 z

)3
] (

ln
µ

mc

+
2

3

)
.

We stress at this point that we always use the pole mass definition in the following, ie
Eqs. (48) for F

ct(j)
i,mcren

.

The total counterterms F
ct(j)
i (i = 1, 2; j = 7, 9) which renormalize diagrams 3.1a)–3.1e)

are given by

F
ct(j)
i = F

ct(j)
i→4quark + F

ct(j)
i→9 + F

ct(j)
i,mcren

. (52)
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Explicitly, they read

F
ct(9)
2 =− F

(9)
2, div −

4

25515

[
5740 + 2520π2 − 840 iπ

+ 840Lµ (19− 3 iπ − 54Lz + 48Lµ) + 3780Lz(−2 + 3Lz)

+ 420Ls (3 iπ + 2 + 6Lµ)− 630L2
s + 252 ŝ (1− 2Lµ)− 54Lµ ŝ

2 − 2 ŝ3 (1 + 4Lµ)

+ 6048

(
ŝ

4 z

)
(18Lµ − 9Lz − 1) + 7776

(
ŝ

4 z

)2

(10Lµ − 5Lz + 3)

+ 1536

(
ŝ

4 z

)3

(42Lµ − 21Lz + 19)

]
,

F
ct(7)
2 =− F

(7)
2, div +

2

2835

(
840Lµ + 70 ŝ+ 7 ŝ2 + ŝ3

)
,

F
ct(9)
1 =− F

(9)
1, div +

2

76545

[
− 62300− 840 iπ + 2520π2

+ 840Lµ(−3 iπ − 54Lz + 48Lµ − 791) + 3780Lz(3Lz + 88)

+ 420Ls(3 iπ + 2 + 6Lµ)− 630L2
s + ŝ(252− 504Lµ)− 54 ŝ2 Lµ − 2 ŝ3(1 + 4Lµ)

− 6048

(
ŝ

4 z

)
(28 + 90Lµ − 45Lz)− 7776

(
ŝ

4 z

)2

(27 + 62Lµ − 31Lz)

− 768

(
ŝ

4 z

)3

(295 + 564Lµ − 282Lz)

]
,

F
ct(7)
1 = −F (7)

1, div −
1

8505

(
840Lµ + 70 ŝ+ 7 ŝ2 + ŝ3

)
. (53)

The divergent parts of these counterterms are, up to a sign, identical to those of the
unrenormalized matrix elements given in Eq. (39a), which proves the cancellation of ultra-
violet singularities.

As mentioned before, we will take diagram 3.1f) into account only in Section 4.1. The same
holds for the counterterms associated with the b and s quark wave function renormalization
and, as mentioned earlier in this subsection, the O(αs) correction to the matrix element of
δZi9O9. The sum of these contributions is

δZ̄ψ〈Oi〉1-loop +
αs
4π

a11
i9

ε

[
δZ̄ψ〈O9〉tree + 〈O9〉1-loop

]
, δZ̄ψ =

√
Zψ(mb)Zψ(ms)− 1,

and provides the counterterm that renormalizes diagram 3.1f). We use on-shell renormal-
ization for the external b and s quark. In this scheme the field strength renormalization
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constants are given by

Zψ(m) = 1− αs
4π

4

3

( µ
m

)2ε
(

1

ε
+

2

εIR
+ 4

)
. (54)

So far, we have discussed the counterterms which renormalize the O(αs) corrected matrix
elements 〈s `+`−|Oi|b〉 (i = 1, 2). The corresponding one-loop matrix elements [of O(α0

s)]
are renormalized by adding the counterterms

αs
4π

a11
i9

ε
〈O9〉tree .

3.3 Renormalized Form Factors of O1 and O2

We decompose the renormalized matrix elements of Oi (i = 1, 2) as

〈s `+`−|C(0)
i Oi|b〉 = C

(0)
i

(
− αs

4π

) [
F

(9)
i 〈Õ9〉tree + F

(7)
i 〈Õ7〉tree

]
, (55)

where Õ9 = αs

4π
O9 and Õ7 = αs

4π
O7. The form factors F

(9)
i and F

(7)
i , expanded up to ŝ3 and

z3, of the renormalized sum of diagrams 3.1a)–e) read [Lc = ln(mc/mb) = ln(m̂c) = Lc/2]

F
(9)
1 =

(
−1424

729
+

16

243
iπ +

64

27
Lc

)
Lµ −

16

243
Lµ Ls +

(
16

1215
− 32

135
z−1

)
Lµ ŝ

+

(
4

2835
− 8

315
z−2

)
Lµ ŝ

2 +

(
16

76545
− 32

8505
z−3

)
Lµ ŝ

3 − 256

243
L2
µ + f

(9)
1 , (56)

F
(9)
2 =

(
256

243
− 32

81
iπ − 128

9
Lc

)
Lµ +

32

81
Lµ Ls +

(
− 32

405
+

64

45
z−1

)
Lµ ŝ

+

(
− 8

945
+

16

105
z−2

)
Lµ ŝ

2 +

(
− 32

25515
+

64

2835
z−3

)
Lµ ŝ

3 +
512

81
L2
µ + f

(9)
2 , (57)

F
(7)
1 = −208

243
Lµ + f

(7)
1 , F

(7)
2 =

416

81
Lµ + f

(7)
2 . (58)

The analytic results for f
(9)
1 , f

(7)
1 , f

(9)
2 , and f

(7)
2 are rather lengthy. We decompose them

as follows:

f (b)
a =

∑
i,j,l,m

κ
(b)
a,ijlm ŝ

i Ljs z
l Lmc +

∑
i,j

ρ
(b)
a,ij ŝ

i Ljs. (59)
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m̂c = 0.25 m̂c = 0.29 m̂c = 0.33

k
(9)
1 (0, 0) −12.715 +0.094699 i −11.973 +0.16371 i −11.355 +0.19217 i

k
(9)
1 (0, 1) −0.078830− 0.074138 i −0.081271− 0.059691 i −0.079426− 0.043950 i

k
(9)
1 (1, 0) −38.742− 0.67862 i −28.432− 0.25044 i −21.648− 0.063493 i

k
(9)
1 (1, 1) −0.039301− 0.00017258 i −0.040243 +0.016442 i −0.029733 +0.031803 i

k
(9)
1 (2, 0) −103.83− 2.5388 i −57.114− 0.86486 i −33.788− 0.24902 i

k
(9)
1 (2, 1) −0.044702 +0.0026283 i −0.035191 +0.027909 i −0.0020505 +0.040170 i

k
(9)
1 (3, 0) −313.75− 8.4554 i −128.80− 2.5243 i −59.105− 0.72977 i

k
(9)
1 (3, 1) −0.051133 +0.022753 i −0.017587 +0.050639 i 0.052779 +0.038212 i

k
(7)
1 (0, 0) −0.76730− 0.11418 i −0.68192− 0.074998 i −0.59736− 0.044915 i

k
(7)
1 (0, 1) 0 0 0

k
(7)
1 (1, 0) −0.28480− 0.18278 i −0.23935− 0.12289 i −0.19850− 0.081587 i

k
(7)
1 (1, 1) −0.0032808 +0.020827 i 0.0027424 +0.019676 i 0.0074152 +0.016527 i

k
(7)
1 (2, 0) 0.056108− 0.23357 i −0.0018555− 0.17500 i −0.039209− 0.12242 i

k
(7)
1 (2, 1) 0.016370 +0.020913 i 0.022864 +0.011456 i 0.022282 +0.00062522 i

k
(7)
1 (3, 0) 0.62438− 0.027438 i 0.28248− 0.12783 i 0.085946− 0.11020 i

k
(7)
1 (3, 1) 0.030536 +0.0091424 i 0.029027− 0.0082265 i 0.012166− 0.019772 i

Table 3.1: Coefficients in the decomposition of f
(9)
1 and f

(7)
1 for three different values of

m̂c. See Eq. (60).

The quantities ρ
(b)
a,ij collect the half-integer powers of z = m2

c/m
2
b = m̂2

c . This way, the
summation indices in the above equation run over integers only. We list the coefficients
κ

(b)
a,ijlm and ρ

(b)
a,ij in Appendix B.

If we give the charm quark mass dependence in numerical form, the formulas become
simpler. For this purpose, we write the functions f

(b)
a as

f (b)
a =

∑
i,j

k(b)
a (i, j) ŝi Ljs (a = 1, 2; b = 7, 9; i = 0, ..., 3; j = 0, 1) . (60)

The numerical values for the quantities k
(b)
a (i, j) are given in Table 3.1 and 3.2 for m̂c = 0.25,

0.29, 0.33. For numerical values corresponding to m̂c = 0.27, 0.29, 0.31 we refer to Tables
I and II (Tables 3.1 and 3.2 in Part II of this thesis) in the letter version [42].
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m̂c = 0.25 m̂c = 0.29 m̂c = 0.33

k
(9)
2 (0, 0) 9.5042− 0.56819 i 6.6338− 0.98225 i 4.3035− 1.1530 i

k
(9)
2 (0, 1) 0.47298 +0.44483 i 0.48763 +0.35815 i 0.47656 +0.26370 i

k
(9)
2 (1, 0) 7.4238 +4.0717 i 3.3585 +1.5026 i 0.73780 +0.38096 i

k
(9)
2 (1, 1) 0.23581 +0.0010355 i 0.24146− 0.098649 i 0.17840− 0.19082 i

k
(9)
2 (2, 0) 0.33806 +15.233 i −1.1906 +5.1892 i −2.3570 +1.4941 i

k
(9)
2 (2, 1) 0.26821− 0.015770 i 0.21115− 0.16745 i 0.012303− 0.24102 i

k
(9)
2 (3, 0) −42.085 +50.732 i −17.120 +15.146 i −9.2008 +4.3786 i

k
(9)
2 (3, 1) 0.30680− 0.13652 i 0.10552− 0.30383 i −0.31667− 0.22927 i

k
(7)
2 (0, 0) 4.6038 +0.68510 i 4.0915 +0.44999 i 3.5842 +0.26949 i

k
(7)
2 (0, 1) 0 0 0

k
(7)
2 (1, 0) 1.7088 +1.0967 i 1.4361 +0.73732 i 1.1910 +0.48952 i

k
(7)
2 (1, 1) 0.019685− 0.12496 i −0.016454− 0.11806 i −0.044491− 0.099160 i

k
(7)
2 (2, 0) −0.33665 +1.4014 i 0.011133 +1.0500 i 0.23525 +0.73452 i

k
(7)
2 (2, 1) −0.098219− 0.12548 i −0.13718− 0.068733 i −0.13369− 0.0037513 i

k
(7)
2 (3, 0) −3.7463 +0.16463 i −1.6949 +0.76698 i −0.51568 +0.66118 i

k
(7)
2 (3, 1) −0.18321− 0.054854 i −0.17416 +0.049359 i −0.072997 +0.11863 i

Table 3.2: Coefficients in the decomposition of f
(9)
2 and f

(7)
2 for three different values of

m̂c. See Eq. (60).

4 Virtual Corrections to the Matrix Elements of the

Operators O7, O8, O9 and O10

4.1 Virtual Corrections to the Matrix Element of O9 and O10

As the hadronic parts of the operators O9 and O10 are identical, the QCD corrected matrix
element of O10 can easily be obtained from the one of O9. We therefore present only
the calculation for 〈s `+`−|O9|b〉 in some detail. The virtual corrections to this matrix
element consist of the vertex correction shown in Fig. 4.1b) and of the quark self-energy
contributions. The result can be written as

〈s `+`−|C9O9|b〉 = C̃
(0)
9

(
− αs

4π

) [
F

(9)
9 〈Õ9〉tree + F

(7)
9 〈Õ7〉tree

]
, (61)

with Õ9 = αs

4π
O9 and C̃

(0)
9 = 4π

αs

(
C

(0)
9 + αs

4π
C

(1)
9

)
.
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Figure 4.1: Some Feynman diagrams for b → sγ∗ or b → s `+`− associated with the
operators O7, O8 and O9. The circle-crosses denote the possible locations where the virtual
photon is emitted, while the crosses mark the possible locations for gluon bremsstrahlung.
See text.

We evaluate diagram 4.1b) keeping the strange quark mass ms as a regulator of collinear

singularities. The unrenormalized contributions of diagram 4.1b) to the form factors F
(7)
9

and F
(9)
9 read

F
(9)
9 [4b] = −

[
µ
mb

]2ε
ε

4

3
+

[
µ
mb

]2ε
εIR

8

3

(
ŝ+

1

2
ŝ2 +

1

3
ŝ3 +

1

2
ln(r)

)
+

8

3
ln(r)− 2

3
ln2(r) +

16

3
+

20

3
ŝ+

16

3
ŝ2 +

116

27
ŝ3 ,

F
(7)
9 [4b] = −2

3
ŝ

(
1 +

1

2
ŝ+

1

3
ŝ2

)
, (62)

where we kept all terms up to ŝ3. εIR and r = (m2
s/m

2
b) regularize the infrared and collinear

singularities in Eq. (62).

The b and s quark self-energy contributions are obtained by multiplying the tree level
matrix element of O9 by the quark field renormalization factor δZ̄ψ =

√
Zψ(mb)Zψ(ms)−1,

where the explicit form for Zψ(m) (in the on-shell scheme) is given in Eq. (54).

Adding the self-energy contributions and the vertex correction, we get the ultraviolet finite
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results

F
(9)
9 =

16

3
+

20

3
ŝ+

16

3
ŝ2 +

116

27
ŝ3 + finf , (63)

finf =

[
µ
mb

]2ε
εIR

8

3

(
1 + ŝ+

1

2
ŝ2 +

1

3
ŝ3

)
+

[
µ
mb

]2ε
εIR

4

3
ln(r) +

2

3
ln(r)− 2

3
ln2(r), (64)

F
(7)
9 = −2

3
ŝ

(
1 +

1

2
ŝ+

1

3
ŝ2

)
. (65)

At this place, it is convenient to incorporate diagram 3.1f) together with its counterterms
discussed in Section 3.2.

It is easy to see that the two loops in diagram 3.1f) factorize into two one-loop contri-
butions. The charm loop has the Lorentz structure of O9 and can therefore be absorbed
into a modified Wilson coefficient: The renormalized diagram 3.1f) is properly included by

modifying C̃
(0)
9 in Eq. (61) as follows:

C̃
(0)
9 −→ C̃

(0,mod)
9 = C̃

(0)
9 +

(
C

(0)
2 +

4

3
C

(0)
1

)
H0 , (66)

where the charm-loop function H0 reads (in expanded form)

H0 =
1

2835

[
−1260 + 2520 ln

(
µ

mc

)
+ 1008

(
ŝ

4 z

)
+ 432

(
ŝ

4 z

)2

+ 256

(
ŝ

4 z

)3
]
. (67)

In the context of virtual corrections also the O(ε) part of this loop function is needed. We
neglect it here since it will drop out in combination with gluon bremsstrahlung. Note that
H0 = h(z, ŝ) + 8/9 ln(µ/mb), with h defined in [41].

4.2 Virtual Corrections to the Matrix Element of O7

We now turn to the virtual corrections to the matrix element of the operator O7, consisting
of the vertex- [see Fig. 4.1a)] and self-energy corrections. The ultraviolet singularities of
the sum of these diagrams are cancelled when adding the counterterm amplitude

C7

[
Z77 Zmb

/Z2
gs
− 1
]
〈s `+`−|O7|b〉tree , where Z77 = 1− αs

4π

7

3 ε
. (68)

The expressions for Zmb
and Zgs are given in Eqs. (49) and (47), respectively. The renor-

malized result for the contribution proportional to C7 can be written as

〈s `+`−|C7O7|b〉 = C̃
(0)
7

(
− αs

4π

) [
F

(9)
7 〈Õ9〉tree + F

(7)
7 〈Õ7〉tree

]
, (69)
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with Õ7 = αs

4π
O7 and C̃

(0)
7 = C

(1)
7 . The expanded form factors F

(9)
7 and F

(7)
7 read

F
(9)
7 = −16

3

(
1 +

1

2
ŝ+

1

3
ŝ2 +

1

4
ŝ3

)
, (70)

F
(7)
7 =

32

3
Lµ +

32

3
+ 8 ŝ+ 6 ŝ2 +

128

27
ŝ3 + finf , (71)

where the infrared and collinear singular part finf is identical to the one of F
(9)
9 in Eq. (64).

Note that the on-shell value for the renormalization factor Zmb
was used in Eq. (68).

Therefore, when using the expression for F
(7,9)
7 in the form given above, the pole mass for

mb has to be used at lowest order.

4.3 Virtual Corrections to the Matrix Element of O8

Finally, we present our results for the corrections to the matrix elements of O8. The
corresponding diagrams are shown in Fig. 4.1c) and d). Including the counterterm

C8 δZ87 〈s `+`−|O7|b〉tree , where δZ87 = − αs
4π

16

9 ε
,

yields the ultraviolet and infrared finite result

〈s `+`−|C8O8|b〉 = C̃
(0)
8

(
− αs

4π

) [
F

(9)
8 〈Õ9〉tree + F

(7)
8 〈Õ7〉tree

]
, (72)

with C̃
(0)
8 = C

(1)
8 . The expanded form factors F

(9)
8 and F

(7)
8 read

F
(9)
8 =

104

9
− 32

27
π2 +

(
1184

27
− 40

9
π2

)
ŝ+

(
14212

135
− 32

3
π2

)
ŝ2

+

(
193444

945
− 560

27
π2

)
ŝ3 +

16

9
Ls
(
1 + ŝ+ ŝ2 + ŝ3

)
, (73)

F
(7)
8 = − 32

9
Lµ +

8

27
π2 − 44

9
− 8

9
iπ +

(
4

3
π2 − 40

3

)
ŝ+

(
32

9
π2 − 316

9

)
ŝ2

+

(
200

27
π2 − 658

9

)
ŝ3 − 8

9
Ls
(
ŝ+ ŝ2 + ŝ3

)
. (74)

5 Bremsstrahlung Corrections

First of all, we remark that in the present paper only those bremsstrahlung diagrams
are taken into account which are needed to cancel the infrared and collinear singularities
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appearing in the virtual corrections. All other bremsstrahlung contributions (which are
finite), will be given elsewhere [44].

It is known [24, 28] that the contribution to the inclusive decay width coming from the
interference between the tree-level and the one-loop matrix elements of O9 [Fig. 4.1b)] and
from the corresponding bremsstrahlung corrections [Fig. 4.1f)] can be written in the form

dΓ99

dŝ
=

dΓvirt
99

dŝ
+
dΓbrems

99

dŝ
,

dΓ99

dŝ
=

(αem
4π

)2 G2
F m

5
b,pole |V ∗

tsVtb|
2

48π3
(1− ŝ)2 (1 + 2ŝ)

[
2
∣∣∣C̃(0)

9

∣∣∣2 αs
π
ω9(ŝ)

]
, (75)

where C̃
(0)
9 = 4π

αs

(
C

(0)
9 + αs

4π
C

(1)
9

)
. This procedure corresponds to encapsulating the virtual

and bremsstrahlung corrections in the tree-level calculation by the replacement

〈O9〉tree →
(
1 +

αs
π
ω9(ŝ)

)
〈O9〉tree.

The function ω9(ŝ) ≡ ω(ŝ), which contains all information on virtual and bremsstrahlung
corrections, can be found in [24, 28] and is given by

ω9(ŝ) = −4

3
Li(ŝ)− 2

3
ln(1− ŝ) ln(ŝ)− 2

9
π2 − 5 + 4 ŝ

3(1 + 2 ŝ)
ln(1− ŝ)

−2 ŝ(1 + ŝ)(1− 2 ŝ)

3(1− ŝ)2(1 + 2 ŝ)
ln(ŝ) +

5 + 9 ŝ− 6 ŝ2

6(1− ŝ)(1 + 2 ŝ)
. (76)

Replacing C̃
(0)
9 by C̃

(0,mod)
9 [see Eq. (66)] in Eq. (75), diagram 3.1f) and the corresponding

bremsstrahlung corrections are automatically included.

For the combination of the interference terms between the tree-level and the one-loop ma-
trix element of O7 [Fig. 4.1a)] and the corresponding bremsstrahlung corrections [Fig. 4.1e)]
we make the ansatz

dΓ77

dŝ
=

dΓvirt
77

dŝ
+
dΓbrems

77

dŝ
,

dΓ77

dŝ
=

(αem
4π

)2 G2
F m

5
b,pole |V ∗

tsVtb|
2

48π3
(1− ŝ)2 4 (1 + 2/ŝ)

[
2
∣∣∣C̃(0)

7

∣∣∣2 αs
π
ω7(ŝ)

]
, (77)

where C̃
(0)
7 = C

(1)
7 . This time, the encapsulation of virtual and bremsstrahlung corrections

is provided by the replacement

〈O7〉tree →
(
1 +

αs
π
ω7(ŝ)

)
〈O7〉tree.

In order to simplify the calculation of ω7(ŝ), we make the important observation that the

form factors F
(7)
7 and F

(9)
9 have the same infrared divergent part finf [cf Eqs. (70) and (63)],
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5. Bremsstrahlung Corrections

whereas F
(9)
7 and F

(7)
9 are finite. Taking into account that in d dimensions the decay width

dΓ(b→ s `+`−)/dŝ corresponding to the matrix element

M(b→ s `+`−) =
〈
s `+`−

∣∣∣C̃(0)
7 Õ

(0)
7 + C̃

(0)
9 Õ

(0)
9 + C̃

(0)
10 Õ

(0)
10

∣∣∣ b〉
tree

(78)

is given by

dΓ(b→ Xs `
+`−)

dŝ
=
(αem

4π

)2 G2
F m

5
b,pole |V ∗

tsVtb|
2

48π3
(1− ŝ)2

[
1 +O(d− 4)

]
×
{[

1 + (d− 2)ŝ
](∣∣∣C̃(0)

9

∣∣∣2 +
∣∣∣C̃(0)

10

∣∣∣2)+ 4
[
1 + (d− 2)/ŝ

] ∣∣∣C̃(0)
7

∣∣∣2
(79)

+ 4(d− 1) Re
(
C̃

(0)
7 C̃

(0)∗
9

)}
,

one concludes that the combination

∆Γvirt =

∣∣∣C̃(0)
9

∣∣∣−2

1 + (d− 2)ŝ

dΓvirt
99

dŝ
−

∣∣∣C̃(0)
7

∣∣∣−2

4
[
1 + (d− 2)/ŝ

] dΓvirt
77

dŝ
(80)

is free of infrared and collinear singularities. Defining analogously

∆Γbrems =

∣∣∣C̃(0)
9

∣∣∣−2

1 + (d− 2)ŝ

dΓbrems
99

dŝ
−

∣∣∣C̃(0)
7

∣∣∣−2

4
[
1 + (d− 2)/ŝ

] dΓbrems
77

dŝ
(81)

and using the identity∣∣∣C̃(0)
9

∣∣∣−2

1 + (d− 2)ŝ

dΓ99

dŝ
−

∣∣∣C̃(0)
7

∣∣∣−2

4
[
1 + (d− 2)/ŝ

] dΓ77

dŝ
= ∆Γvirt + ∆Γbrems , (82)

one concludes that also ∆Γbrems is finite. This is because dΓ99/dŝ and dΓ77/dŝ are finite due
to the Kinoshita-Lee-Nauenberg theorem and because ∆Γvirt is finite as mentioned above.
The calculation of ∆Γbrems is straightforward, as the integrand, expanded in ε, leads to
unproblematic integrals. Using the explicit results for ∆Γvirt, ∆Γbrems and ω9(ŝ), one can
readily extract ω7(ŝ) from Eq. (82):

ω7(ŝ) = −8

3
ln

(
µ

mb

)
− 4

3
Li(ŝ)− 2

9
π2 − 2

3
ln(ŝ) ln(1− ŝ)− 1

3

8 + ŝ

2 + ŝ
ln(1− ŝ)

−2

3

ŝ (2− 2 ŝ− ŝ2)

(1− ŝ)2(2 + ŝ)
ln(ŝ)− 1

18

16− 11 ŝ− 17 ŝ2

(2 + ŝ)(1− ŝ)
. (83)

The reasoning for the interference terms between the tree-level matrix element of O7 and
the one-loop matrix element of O9 and vice versa is analogous: We may combine this
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contribution with the corresponding bremsstrahlung terms coming from the interference of
diagrams 4.1e) and 4.1f) making the ansatz

dΓ79

dŝ
=

dΓvirt
79

dŝ
+
dΓbrems

79

dŝ
,

dΓ79

dŝ
=

(αem
4π

)2 G2
F m

5
b,pole |V ∗

tsVtb|
2

48π3
(1− ŝ)2 · 12

[
2 Re

(
C̃

(0)
7 C̃

(0)∗
9

) αs
π
ω79(ŝ)

]
. (84)

The corresponding encapsulation is realized by the replacement

〈O7,9〉tree →
(
1 +

αs
π
ω79(ŝ)

)
〈O7,9〉tree.

This time, we make use of the fact that the quantities

∆Γvirt
mixed =

∣∣∣C̃(0)
9

∣∣∣−2

1 + (d− 2)ŝ

dΓvirt
99

dŝ
−

Re
[
C̃

(0)
7 C̃

(0)∗
9

]−1

4(d− 1)

dΓvirt
79

dŝ
(85)

and

∆Γbrems
mixed =

∣∣∣C̃(0)
9

∣∣∣−2

1 + (d− 2)ŝ

dΓbrems
99

dŝ
−

Re
[
C̃

(0)
7 C̃

(0)∗
9

]−1

4(d− 1)

dΓbrems
79

dŝ
(86)

are finite. For the function ω79(ŝ) we obtain

ω79(ŝ) = −4

3
ln

(
µ

mb

)
− 4

3
Li(ŝ)− 2

9
π2 − 2

3
ln(ŝ) ln(1− ŝ)− 1

9

2 + 7 ŝ

ŝ
ln(1− ŝ)

−2

9

ŝ (3− 2 ŝ)

(1− ŝ)2 ln(ŝ) +
1

18

5− 9 ŝ

1− ŝ
. (87)

Note that the procedure described here does work only if one of the functions ω7(ŝ), ω9(ŝ)
or ω79(ŝ) is known already.

Finally, we remark that the combined virtual and bremsstrahlung corrections to the oper-
ator O10 (which has the same hadronic structure as O9) is described by the function ω9(ŝ),
too:

dΓ10,10

dŝ
=

dΓvirt
10,10

dŝ
+
dΓbrems

10,10

dŝ
,

dΓ10,10

dŝ
=

(αem
4π

)2 G2
F m

5
b,pole |V ∗

tsVtb|
2

48π3
(1− ŝ)2 (1 + 2ŝ)

[
2
∣∣∣C̃(0)

10

∣∣∣2 αs
π
ω9(ŝ)

]
, (88)

where C̃
(0)
10 = C

(1)
10 .
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6 Corrections to the Decay Width for B → Xs `+`−

In this section we combine the virtual corrections calculated in Sections 3, 4 and the
bremsstrahlung contributions discussed in Section 5 and study their influence on the decay
width dΓ(b → Xs `

+`−)/dŝ. In the literature (see eg [41]), this decay width is usually
written as

dΓ(b→ Xs `
+`−)

dŝ
=
(αem

4π

)2 G2
F m

5
b,pole |V ∗

tsVtb|
2

48π3
(1− ŝ)2

×
{

(1 + 2ŝ)

(∣∣∣C̃eff
9

∣∣∣2 +
∣∣∣C̃eff

10

∣∣∣2)+ 4(1 + 2/ŝ)
∣∣∣C̃eff

7

∣∣∣2 + 12 Re
(
C̃eff

7 C̃
eff∗
9

)}
, (89)

where the contributions calculated so far have been absorbed into the effective Wilson
coefficients C̃eff

7 , C̃eff
9 and C̃eff

10 . It turns out that also the new contributions calculated in
the present paper can be absorbed into these coefficients. Following as closely as possible
the ‘parameterization’ given recently by Bobeth et al. [41], we write

C̃eff
9 =

(
1 +

αs(µ)

π
ω9(ŝ)

)(
A9 + T9 h(z, ŝ) + U9 h(1, ŝ) +W9 h(0, ŝ)

)
−αs(µ)

4π

(
C

(0)
1 F

(9)
1 + C

(0)
2 F

(9)
2 + A

(0)
8 F

(9)
8

)
, (90)

C̃eff
7 =

(
1 +

αs(µ)

π
ω7(ŝ)

)
A7 −

αs(µ)

4π

(
C

(0)
1 F

(7)
1 + C

(0)
2 F

(7)
2 + A

(0)
8 F

(7)
8

)
,

C̃eff
10 =

(
1 +

αs(µ)

π
ω9(ŝ)

)
A10 ,

where the expressions for h(z, ŝ) and ω9(ŝ) [see Eqs. (67) and (76)] were already available

in the literature [24, 28, 41]. The quantities ω7(ŝ) and F
(7,9)
1,2,8 , on the other hand, have been

calculated in the present paper. We take the numerical values for A7, A9, A10, T9, U9, and
W9 from [41], while C

(0)
1 , C

(0)
2 and A

(0)
8 = C̃

(0,eff)
8 can be found in [48]. For completeness we

list them in Table 6.1.

In Fig. 6.1 we illustrate the renormalization scale dependence of Re
[
C̃eff

7 (ŝ)
]
. The dashed

curves are obtained by neglecting the corrections calculated in this paper, ie ω7(ŝ), F
(7)
1 ,

F
(7)
2 and F

(7)
8 are put equal to zero in Eq. (90). The three curves correspond to the

values µ = 2.5 GeV (lower curve), µ = 5 GeV (middle curve) and µ = 10 GeV (upper
curve) of the renormalization scale. The solid curves are obtained by taking into account
the new corrections. In this case, the lowest, middle and uppermost curve correspond to
µ = 10 GeV, 5 GeV and 2.5 GeV, respectively. We conclude that the new corrections

significantly reduce the renormalization scale dependence of Re
[
C̃eff

7 (ŝ)
]
.

Fig. 6.2 shows the renormalization scale dependence of Re
[
C̃eff

9 (ŝ)
]
. Again, the dashed
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µ = 2.5 GeV µ = 5 GeV µ = 10 GeV

αs 0.267 0.215 0.180

C
(0)
1 −0.697 −0.487 −0.326

C
(0)
2 1.046 1.024 1.011(
A

(0)
7 , A

(1)
7

)
(−0.360, 0.031) (−0.321, 0.019) (−0.287, 0.008)

A
(0)
8 −0.164 −0.148 −0.134(
A

(0)
9 , A

(1)
9

)
(4.241, − 0.170) (4.129, 0.013) (4.131, 0.155)(

T
(0)
9 , T

(1)
9

)
(0.115, 0.278) (0.374, 0.251) (0.576, 0.231)(

U
(0)
9 , U

(1)
9

)
(0.045, 0.023) (0.032, 0.016) (0.022, 0.011)(

W
(0)
9 , W

(1)
9

)
(0.044, 0.016) (0.032, 0.012) (0.022, 0.009)(

A
(0)
10 , A

(1)
10

)
(−4.372, 0.135) (−4.372, 0.135) (−4.372, 0.135)

Table 6.1: Coefficients appearing in Eq. (90) for µ = 2.5 GeV, µ = 5 GeV and µ =
10 GeV. For αs(µ) (in the MS scheme) we used the two-loop expression with 5 flavors
and αs(mZ) = 0.119. The entries correspond to the pole top quark mass mt = 174 GeV.
The superscript (0) refers to lowest order quantities while the superscript (1) denotes the
correction terms of order αs.

curves are obtained by neglecting the new corrections in Eq. (90), ie F
(9)
1 , F

(9)
2 and F

(9)
8

are put to zero. We stress that ω9(ŝ) is retained, as this function has been known before.
The three curves correspond to the values µ = 2.5 GeV (lower curve), µ = 5 GeV (middle
curve) and µ = 10 GeV (upper curve) of the renormalization scale. The solid curves take
the new corrections into account. Now, the lowest, middle and uppermost curve correspond
to µ = 2.5 GeV, 5 GeV and 10 GeV, respectively. We conclude that the new corrections

significantly reduce the renormalization scale dependence of Re
[
C̃eff

9 (ŝ)
]
, too.

When calculating the decay width (89), we retain only terms linear in αs (and thus

in ω7, ω9) in the expressions for |C̃eff
7 |2, |C̃eff

9 |2 and |C̃eff
10 |2. In the interference term

Re
[
C̃eff

7 C̃
eff∗
9

]
too, we keep only linear contributions in αs. By construction, one has to

make the replacements ω9 → ω79 and ω7 → ω79 in this term.

Our results include all the relevant virtual corrections and those bremsstrahlung diagrams
which generate infrared and collinear singularities. There exist additional bremsstrahlung
terms coming, for example, from one-loop O1 and O2 diagrams in which both the virtual
photon and the gluon are emitted from the charm quark line. These contributions do not
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Figure 6.1: The three solid curves illustrate the µ dependence of Re
[
C̃eff

7 (ŝ)
]

when the

new corrections are included. The dashed curves are obtained when switching off these
corrections. We set m̂c = 0.29. See text.

induce additional renormalization scale dependence as they are ultraviolet finite. Using
our experience from b→ sγ and b→ sg, these contributions are not expected to be large,
but to give a definitive answer concerning their size they have to be calculated [44].

7 Numerical Results for Rquark(ŝ)

The decay width in Eq. (89) has a large uncertainty due to the factor m5
b,pole. Following

common practice, we consider the ratio

Rquark(ŝ) =
1

Γ(b→ Xc e ν̄e)

dΓ(b→ Xs `
+`−)

dŝ
, (91)

in which the factor m5
b,pole drops out. The explicit expression for the semileptonic decay

width Γ(b→ Xc e ν̄e) reads

Γ(b→ Xc e ν̄e) =
G2
F m

5
b,pole

192π3
|Vcb|2 · g

(
m2
c,pole

m2
b,pole

)
·K
(
m2
c

m2
b

)
, (92)

99



Part III: Physical Review D 65 (2002) 074004

�����

�

� ���

�

��� ��� ���	� ���	�
� ����� �������


 �
� �	�
�����

��

Figure 6.2: The three solid curves illustrate the µ dependence of Re
[
C̃eff

9 (ŝ)
]

when the

new corrections are included. The dashed curves are obtained when switching off these
corrections. We set m̂c = 0.29. See text.

where g(z) = 1− 8 z + 8 z3 − z4 − 12 z2 ln(z) is the phase space factor, and

K(z) = 1− 2αs(mb)

3π

f(z)

g(z)
(93)

incorporates the next-to-leading QCD correction to the semileptonic decay [49]. The func-
tion f(z) has been given analytically in Ref. [50]:

f(z) =− (1− z2)

(
25

4
− 239

3
z +

25

4
z2

)
+ z ln(z)

(
20 + 90 z − 4

3
z2 +

17

3
z3

)
+ z2 ln2(z)

(
36 + z2

)
+
(
1− z2

) (17

3
− 64

3
z +

17

3
z2

)
ln(1− z)

− 4
(
1 + 30 z2 + z4

)
ln(z) ln(1− z)−

(
1 + 16 z2 + z4

) (
6 Li(z)− π2

)
− 32 z3/2(1 + z)

[
π2 − 4 Li(

√
z) + 4 Li(−

√
z)− 2 ln(z) ln

(
1−

√
z

1 +
√
z

)]
. (94)

We now turn to the numerical results for Rquark(ŝ) for 0.05 ≤ ŝ ≤ 0.25. In Fig. 7.1 we
investigate the dependence of Rquark(ŝ) on the renormalization scale µ. The solid lines
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Figure 7.1: The three solid lines show the µ dependence of Rquark(ŝ) when including the
corrections to the matrix elements calculated in this paper. The dashed lines are obtained
when switching off these corrections. We set m̂c = 0.29. See text.

are obtained by including the new NNLL contributions, as explained in Section 6. The
three solid curves correspond to µ = 2.5 GeV (lowest line), µ = 5 GeV (middle line)
and µ = 10 GeV (uppermost line). The three dashed curves (again µ = 2.5 GeV for the
lowest, µ = 5 GeV for the middle and µ = 10 GeV for the uppermost line), on the other
hand, show the results without the new NNLL corrections, ie they include the NLL results
combined with the NNLL corrections to the matching conditions as obtained by Bobeth
et al. [41]. From this figure we conclude that the renormalization scale dependence gets
reduced by more than a factor of 2. Only for low values of ŝ (ŝ ∼ 0.05), where the NLL
µ dependence is small already, the reduction factor is smaller. For the integrated quantity
we obtain

Rquark =

0.25∫
0.05

dŝRquark(ŝ) =
(
1.25± 0.08(µ)

)
× 10−5 , (95)

where the error is obtained by varying µ between 2.5 GeV and 10 GeV. Before our correc-
tions, the result was Rquark = (1.36±0.18)×10−5 [41]. In other words, the renormalization
scale dependence got reduced from ∼ ±13% to ∼ ±6.5%.
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Figure 7.2: a) Rquark(ŝ) for m̂c = 0.27 (dashed line), m̂c = 0.29 (solid line) and m̂c = 0.31
(dash-dotted line) and µ = 5 GeV. b) Rquark(ŝ) for m̂c = 0.25 (dashed line), m̂c = 0.29
(solid line) and m̂c = 0.33 (dash-dotted line) and µ = 5 GeV. See text.

Among the errors on Rquark(ŝ) which are due to the uncertainties in the input parameters,
the one induced by m̂c = mc/mb is known to be the largest. We repeat at this point that mc

enters (unlike in B → Xs γ) already the one-loop diagrams associated with O1 and O2. We
did the renormalization of the charm quark mass in such a way that mc has the meaning
of the pole mass in the one-loop expressions. The meaning of mc in the corresponding
two-loop matrix elements, on the other hand, is not fixed (for a discussion of this issue
for B → Xs γ, see Ref. [14]). As the running charm mass at a scale of O(mb) is smaller
than the pole mass, it numerically makes a difference whether one inserts a pole mass- or a
running mass value for mc in the two-loop contributions. In a thorough phenomenological
analysis this issue should certainly be included when estimating the theoretical error. We
decide, however, to postpone the quantitative discussion of this point and will take it up
when also the finite bremsstrahlung contributions, which complete the NNLL calculation
of Rquark(ŝ), are available [44]. For the time being, we interpret mc to be the pole mass
in the two-loop contributions. In Fig. 7.2a) we vary m̂c between 0.27 and 0.31, while
in Fig. 7.2b) the more conservative range 0.25 ≤ m̂c ≤ 0.33 is considered. Comparing
Fig. 7.1 with Figs. 7.2a) and b), we find that at the NNLL level the uncertainty due to m̂c

is larger than the leftover µ dependence, even for the less conservative range of m̂c. For
the integrated quantity Rquark we have an uncertainty of ±7.6% when m̂c is varied between
0.27 and 0.31. Varying m̂c in the more conservative range, the corresponding uncertainty
amounts to ±15%.

A more detailed numerical analysis for Rquark(ŝ) and Rquark, including the errors which are
due to uncertainties in other input parameters as well as non-perturbative effects, will be
given together with the complete bremsstrahlung terms in Ref. [44].

To conclude: We have calculated virtual corrections of O(αs) to the matrix elements of O1,
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O2, O7, O8, O9 and O10. We also took into account those bremsstrahlung corrections which
cancel the infrared and collinear singularities in the virtual corrections. The renormaliza-
tion scale dependence of Rquark(ŝ) gets reduced by more than a factor of 2. The calculation
of the remaining bremsstrahlung contributions (which are expected to be rather small) and
a more detailed numerical analysis are in progress [44].
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A One-loop Matrix Elements of the Four-Quark

Operators

In order to fix the counterterms F
ct(7,9)
i→4quark (i = 1, 2) in Eq. (45), we need the one-loop

matrix elements 〈s `+`−|Oj|b〉1-loop of the four-quark operators O1, O2, O4, O11 and O12.
Due to the 1/ε factor in Eq. (45), they are needed up to O (ε1). The explicit results (in
expanded form) read

〈s `+`−|O2|b〉1-loop =

(
µ

mc

)2ε

×{
4

9 ε
+

4

2835

[
−315 + 252

(
ŝ

4 z

)
+ 108

(
ŝ

4 z

)2

+ 64

(
ŝ

4 z

)3
]

(96)

+
ε

2835

[
105π2 − 1008

(
ŝ

4 z

)
+ 128

(
ŝ

4 z

)3
]}

〈Õ9〉tree ,

〈s `+`−|O1|b〉1-loop =
4

3
〈s `+`−|O2|b〉1-loop , (97)

〈s `+`−|O4|b〉1-loop =−
(
µ

mb

)2ε
{[

4

9
+

ε

945

(
70 ŝ+ 7 ŝ2 + ŝ3

)]
〈Õ7〉tree

+

[
16

27 ε
+

2

8505

(
−420 + 1260 iπ − 1260Ls + 252 ŝ+ 27 ŝ2 + 4 ŝ3

)
+

4 ε

8505

(
420 iπ + 910− 630 i Ls π − 420Ls − 315π2

+ 315L2
s − 126 ŝ+ ŝ3

) ]
〈Õ9〉tree

}
, (98)

〈s `+`−|O11|b〉1-loop =− 64

27
×(

µ

mc

)2ε
{

1 +
4 ε

5

[
ŝ

4 z
+

3

7

(
ŝ

4 z

)2

+
16

63

(
ŝ

4 z

)3
]}

〈Õ9〉tree , (99)

〈s `+`−|O12|b〉1-loop =
3

4
〈s `+`−|O11|b〉1-loop . (100)
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1,2

B Full ŝ and z Dependence of the Form Factors F
(7,9)
1,2

In this appendix we give the dependence of f
(b)
a (a = 1, 2; b = 7, 9) [see Eq. (59)] on ŝ and

z. We decompose them as follows:

f (b)
a =

∑
i,j,l,m

κ
(b)
a,ijlm ŝ

i Ljs z
l Lmc +

∑
i,j

ρ
(b)
a,ij ŝ

i Ljs .

The quantities ρ
(b)
a,ij collect the half-integer powers of z = m2

c/m
2
b = m̂2

c . This way, the
summation indices in the above equation run over integers only. On the following pages,
we list the numerical values of κ

(b)
a,ijlm and ρ

(b)
a,ij for

i = 0, ..., 3; j = 0, 1; l = −3, ..., 3 and m = 0, ..., 4 .

Coefficients not explicitly mentioned below vanish.

Coefficients κ
(9)
1,ijlm and ρ

(9)
1,ij for the decomposition of f

(9)
1

ρ
(9)
1,00 = 3.8991 m̂3

c ρ
(9)
1,10 = −23.3946 m̂c

ρ
(9)
1,20 = −140.368 m̂c ρ

(9)
1,30 = 7.79821 m̂−1

c − 319.726 m̂c

κ
(9)
1,00lm =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−4.61812+ 3.67166 i 5.62963+ 1.86168 i 0 0 0
14.4621− 16.2155 i 9.59321− 11.1701 i −1.18519− 7.44674 i −0.790123 0

−16.0864 + 26.7517 i 54.2439− 14.8935 i −15.4074− 29.787 i −3.95062 0
−14.73− 23.6892 i −28.5761+ 34.7514 i 20.1481 0 0



κ
(9)
1,01lm =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−0.0493827− 0.103427 i 0 0 0 0
−0.592593 0 0 0 0

4.95977− 1.86168 i −1.18519− 7.44674 i −2.37037 0 0
−9.20287− 1.65483 i −1.0535+ 9.92898 i 3.16049 0 0



κ
(9)
1,10lm =


0 0 0 0 0
0 0 0 0 0

−2.48507− 0.186168 i 0 0 0 0
4.47441− 0.310281 i 1.48148− 1.86168 i 0 0 0
71.3855− 30.7987 i 8.47677− 33.5103 i 12.5389− 7.44674 i −0.790123 0.790123

−18.1301+ 66.1439 i 149.596− 67.0206 i −49.1852− 81.9141 i −11.0617 0
−72.89− 63.7828 i −68.135+ 134.041 i 63.6049 0 0



κ
(9)
1,11lm =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−2.66667− 1.86168 i −1.18519 0 0 0
18.6539− 7.44674 i −4.74074− 29.787 i −9.48148 0 0

−41.6104− 3.72337 i −2.37037+ 44.6804 i 14.2222 0 0



105



Part III: Physical Review D 65 (2002) 074004

κ
(9)
1,20lm =


0 0 0 0 0

−0.403158− 0.0199466 i 0 0 0 0
−0.0613169+ 0.0620562 i 0 0 0 0

37.1282− 1.36524 i 22.0621− 1.86168 i 5.33333 0.790123 0
212.74− 52.2081 i −21.9215− 52.1272 i 57.1724− 7.44674 i −2.37037 2.37037

−44.6829+ 108.713 i 272.015− 163.828 i −119.111− 156.382 i −21.3333 0
−137.203− 106.832 i −99.437+ 330.139 i 168.889 0 0



κ
(9)
1,21lm =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0.0164609 0 0 0 0
−5.33333− 3.72337 i −2.37037 0 0 0

40.786− 22.3402 i −14.2222− 67.0206 i −21.3333 0 0
−111.356 119.148 i 37.9259 0 0



κ
(9)
1,30lm =


−0.0759415− 0.00295505 i 0 0 0 0
−0.00480894+ 0.00369382 i 0 0 0 0

−1.81002+ 0.0871741 i −0.919459 −0.197531 0 0
79.7475− 1.72206 i 57.3171− 1.86168 i 11.2593 2.37037 0
425.579− 76.6479 i −68.8016− 69.5029 i 129.357− 7.44674 i −5.53086 4.74074

−87.8946+ 148.481 i 417.612− 311.522 i −227.16− 253.189 i −34.7654 0
−279.268− 135.118 i −146.853+652.831 i 331.259 0 0



κ
(9)
1,31lm =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0.0219479 0 0 0 0
−8.2963− 5.58505 i −3.55556 0 0 0
70.2698− 49.6449 i −31.6049− 119.148 i −37.9259 0 0

−231.893+18.6168 i 11.8519+ 248.225 i 79.0123 0 0



Coefficients κ
(7)
1,ijlm and ρ

(7)
1,ij for the decomposition of f

(7)
1

ρ
(7)
1,00 = 1.94955 m̂3

c ρ
(7)
1,10 = 11.6973 m̂c

ρ
(7)
1,20 = 70.1839 m̂c ρ

(7)
1,30 = −3.8991 m̂−1

c + 159.863 m̂c

κ
(7)
1,00lm =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−1.14266− 0.517135 i 0 0 0 0
−2.20356+ 1.59186 i −5.21743+ 1.86168 i 0.592593 +3.72337 i 0.395062 0

1.86366− 3.06235 i −4.66347 3.72337 i 0.395062 0
−1.21131+ 2.89595 i 2.99588− 2.48225 i −4.14815 0 0


κ

(7)
1,01lm = 0
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κ
(7)
1,10lm =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−2.07503+ 1.39626 i −0.444444 + 0.930842 i 0 0 0
−25.9259 + 5.78065 i −3.40101+ 13.0318 i −4.4917+ 3.72337 i 0.395062 −0.395062

11.4229− 15.2375 i −34.0806+ 11.1701 i 10.3704+ 18.6168 i 2.37037 0
11.7509+ 15.6984 i 18.9564− 24.8225 i −14.6173 0 0



κ
(7)
1,11lm =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−0.0164609 0 0 0 0
1.03704 + 0.930842 i 0.592593 0 0 0

−4.66347 7.44674 i 2.37037 0 0
6.73754 + 1.86168 i 1.18519− 7.44674 i −2.37037 0 0



κ
(7)
1,20lm =


0 0 0 0 0
0 0 0 0 0

0.00555556 0 0 0 0
−19.4691 + 1.59019 i −11.6779+ 0.930842 i −2.96296 −0.395062 0
−90.4953 + 14.7788 i 14.9329+ 22.3402 i −24.438 +3.72337 i 1.18519 −1.18519

23.8816− 32.8021 i −82.7915+ 39.0954 i 32.2963+ 44.6804 i 5.92593 0
38.1415+ 34.8683 i 38.6436− 80.673 i −41.5802 0 0



κ
(7)
1,21lm =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−0.0164609 0 0 0 0
2.37037+ 1.86168 i 1.18519 0 0 0

−13.9904+ 3.72337 i 2.37037+ 22.3402 i 7.11111 0 0
27.5428+ 3.72337 i 2.37037− 29.787 i −9.48148 0 0



κ
(7)
1,30lm =


0 0 0 0 0

−0.00010778 + 0.00258567 i 0 0 0 0
0.946811− 0.0258567 i 0.488889 0.0987654 0 0
−41.9952 + 1.63673 i −30.2091 + 0.930842 i −6.22222 −1.18519 0
−189.354+25.8196 i 42.6566+ 31.0281 i −57.765 +3.72337 i 2.76543 −2.37037

45.1784− 52.4207 i −145.181+ 88.7403 i 70.9136+ 81.9141 i 11.0617 0
77.3602+ 54.2499 i 58.4491− 184.927 i −96.0988 0 0



κ
(7)
1,31lm =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−0.0164609 0 0 0 0
3.85185 + 2.79253 i 1.77778 0 0 0

−27.3882+ 13.0318 i 8.2963+ 44.6804 i 14.2222 0 0
69.4495+ 1.86168 i 1.18519− 74.4674 i −23.7037 0 0



Coefficients κ
(9)
2,ijlm and ρ

(9)
2,ij for the decomposition of f

(9)
2

ρ
(9)
2,00 = −23.3946 m̂3

c ρ
(9)
2,10 = 140.368 m̂c

ρ
(9)
2,20 = 842.206 m̂c ρ

(9)
2,30 = −46.7892 m̂−1

c + 1918.36 m̂c
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κ
(9)
2,00lm =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−24.2913− 22.0299 i −23.1111− 11.1701 i 0 0 0
−86.7723+ 97.2931 i −57.5593+ 67.0206 i 7.11111 + 44.6804 i 4.74074 0

96.5187− 160.51 i −325.463 +89.3609 i 92.4444 + 178.722 i 23.7037 0
88.3801+ 142.135 i 171.457− 208.509 i −120.889 0 0



κ
(9)
2,01lm =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0.296296 +0.620562 i 0 0 0 0
3.55556 0 0 0 0

−29.7586+ 11.1701 i 7.11111+ 44.6804 i 14.2222 0 0
55.2172 + 9.92898 i 6.32099− 59.5739 i −18.963 0 0



κ
(9)
2,10lm =


0 0 0 0 0
0 0 0 0 0

0.8462 + 1.11701 i 0 0 0 0
−26.8464+ 1.86168 i −8.88889+ 11.1701 i 0 0 0
−428.313+ 184.792 i −50.8606+ 201.062 i −75.2337+ 44.6804 i 4.74074 −4.74074

108.781− 396.864 i −897.575+402.124 i 295.111 +491.485 i 66.3704 0
437.34 + 382.697 i 408.81− 804.248 i −381.63 0 0



κ
(9)
2,11lm =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

16.+ 11.1701 i 7.11111 0 0 0
−111.923 + 44.6804 i 28.4444+ 178.722 i 56.8889 0 0

249.663 + 22.3402 i 14.2222− 268.083 i −85.3333 0 0



κ
(9)
2,20lm =


0 0 0 0 0

−0.0132191+ 0.11968 i 0 0 0 0
0.367901− 0.372337 i 0 0 0 0
−222.769+8.19141 i −132.372 +11.1701 i −32.0 −4.74074 0
−1276.44 +313.249 i 131.529 +312.763 i −343.034+44.6804 i 14.2222 −14.2222

268.098− 652.279 i −1632.09 +982.969 i 714.667+938.289 i 128.0 0
823.218+640.989 i 596.622− 1980.83 i −1013.33 0 0



κ
(9)
2,21lm =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−0.0987654 0 0 0 0
32.0+ 22.3402 i 14.2222 0 0 0

−244.716 +134.041 i 85.3333+ 402.124 i 128 0 0
668.137 −714.887 i −227.556 0 0



κ
(9)
2,30lm =


−0.0142243 +0.0177303 i 0 0 0 0

0.0288536− 0.0221629 i 0 0 0 0
10.8601− 0.523045 i 5.51675 1.18519 0 0

−478.485+ 10.3323 i −343.902+11.1701 i −67.5556 −14.2222 0
−2553.47 + 459.887 i 412.809+417.017 i −776.143 +44.6804 i 33.1852 −28.4444

527.368− 890.889 i −2505.67 +1869.13 i 1362.96 +1519.13 i 208.593 0
1675.61 +810.709 i 881.117− 3916.98 i −1987.56 0 0


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κ
(9)
2,31lm =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−0.131687 0 0 0 0
49.7778 + 33.5103 i 21.3333 0 0 0

−421.619+ 297.87 i 189.63 +714.887 i 227.556 0 0
1391.36− 111.701 i −71.1111− 1489.35 i −474.074 0 0



Coefficients κ
(7)
2,ijlm and ρ

(7)
2,ij for the decomposition of f

(7)
2

ρ
(7)
2,00 =− 11.6973 m̂3

c ρ
(7)
2,10 =− 70.1839 m̂c

ρ
(7)
2,20 =− 421.103 m̂c ρ

(7)
2,30 =23.3946 m̂−1

c − 959.179 m̂c

κ
(7)
2,00lm =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

6.85597 + 3.10281 i 0 0 0 0
13.2214− 9.55118 i 31.3046− 11.1701 i −3.55556− 22.3402 i −2.37037 0
−11.182 +18.3741 i 27.9808 −22.3402 i −2.37037 0
7.26787− 17.3757 i −17.9753+ 14.8935 i 24.8889 0 0


κ

(7)
2,01lm = 0

κ
(7)
2,10lm =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

12.4502− 8.37758 i 2.66667− 5.58505 i 0 0 0
155.555− 34.6839 i 20.4061− 78.1908 i 26.9502− 22.3402 i −2.37037 2.37037

−68.5374+ 91.4251 i 204.484− 67.0206 i −62.2222− 111.701 i −14.2222 0
−70.5057− 94.1903 i −113.738+148.935 i 87.7037 0 0



κ
(7)
2,11lm =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0.0987654 0 0 0 0
−6.22222− 5.58505 i −3.55556 0 0 0

27.9808 −44.6804 i −14.2222 0 0
−40.4253− 11.1701 i −7.11111+ 44.6804 i 14.2222 0 0



κ
(7)
2,20lm =


0 0 0 0 0
0 0 0 0 0

−0.0333333 0 0 0 0
116.815− 9.54113 i 70.0677− 5.58505 i 17.7778 2.37037 0
542.972− 88.6728 i −89.5971− 134.041 i 146.628− 22.3402 i −7.11111 7.11111
−143.29 +196.813 i 496.749− 234.572 i −193.778− 268.083 i −35.5556 0
−228.849− 209.21 i −231.862+ 484.038 i 249.481 0 0


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κ
(7)
2,21lm =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0.0987654 0 0 0 0
−14.2222− 11.1701 i −7.11111 0 0 0

83.9424− 22.3402 i −14.2222− 134.041 i −42.6667 0 0
−165.257− 22.3402 i −14.2222+ 178.722 i 56.8889 0 0



κ
(7)
2,30lm =


0 0 0 0 0

0.000646678− 0.015514 i 0 0 0 0
−5.68087+ 0.15514 i −2.93333 −0.592593 0 0

251.971− 9.82039 i 181.255− 5.58505 i 37.3333 7.11111 0
1136.13− 154.918 i −255.94− 186.168 i 346.59− 22.3402 i −16.5926 14.2222
−271.07 +314.524 i 871.089− 532.442 i −425.481− 491.485 i −66.3704 0
−464.161− 325.499 i −350.695+1109.56 i 576.593 0 0



κ
(7)
2,31lm =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0.0987654 0 0 0 0
−23.1111− 16.7552 i −10.6667 0 0 0

164.329− 78.1908 i −49.7778− 268.083 i −85.3333 0 0
−416.697− 11.1701 i −7.11111+ 446.804 i 142.222 0 0


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We present the results of the O(αs) two-loop virtual corrections to the
differential decay width dΓ(B → Xs `

+`−)/dŝ, where ŝ is the invariant
mass squared of the lepton pair, normalized to m2

b . Those contribu-
tions from gluon bremsstrahlung which are needed to cancel infrared
and collinear singularities are also included. Our calculation is restricted
to the range 0.05 ≤ ŝ ≤ 0.25 where the effects from resonances are small.
The new contributions drastically reduce the renormalization scale de-
pendence of existing results for dΓ(B → Xs `

+`−)/dŝ. The renormaliza-
tion scale uncertainty of the corresponding branching ratio (restricted to
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1 Introduction

After the observation of the penguin-induced decay B → Xsγ [1] and corresponding exclu-
sive channels such as B → K∗γ [2], rare B decays have begun to play an important role in
the phenomenology of particle physics. They put strong constraints on various extensions
of the Standard Model. The inclusive decay B → Xs `

+`− has not been observed so far,
but is expected to be detected at the currently running B factories.

The next-to-leading logarithmic (NLL) result for B → Xs `
+`− suffers from a relatively

large (±16%) dependence on the matching scale µW [3, 4]. The NNLL corrections to
the Wilson coefficients remove the matching scale dependence to a large extent [5], but
leave a ±13%-dependence on the renormalization scale µb, which is of O(mb). In order to
further improve the result, we have recently calculated the O(αs) two-loop corrections to
the matrix elements of the operators O1 and O2 as well as the O(αs) one-loop corrections
to O7,..., O10 [6]. Because of large resonant contributions from c̄c intermediate states, we
restrict the invariant lepton mass squared s to the region 0.05 ≤ ŝ ≤ 0.25, where ŝ = s/m2

b .
In the following we present a summary of the results of these calculations.

2 Theoretical Framework

The appropriate tool for studies on weak B mesons decays is the effective Hamiltonian
technique. The effective Hamiltonian is derived from the Standard Model by integrating
out the t quark, the Z0 and the W boson. For the decay channels b→ s `+`− (` = µ, e) it
reads

Heff = −4GF√
2
V ∗
ts Vtb

10∑
i=1

CiOi,

where Oi are dimension six operators and Ci denote the corresponding Wilson coefficients.
The operators can be chosen as [5]

O1 = (s̄LγµT
acL)(c̄Lγ

µT abL), O2 = (s̄LγµcL)(c̄Lγ
µbL),

O3 = (s̄LγµbL)
∑

q(q̄γ
µq), O4 = (s̄LγµT

abL)
∑

q(q̄γ
µT aq),

O5 = (s̄LγµγνγσbL)
∑

q(q̄γ
µγνγσq), O6 = (s̄LγµγνγσT

abL)
∑

q(q̄γ
µγνγσT aq),

O7 = e
g2s
mb(s̄Lσ

µνbR)Fµν , O8 = 1
gs
mb(s̄Lσ

µνT abR)Ga
µν ,

O9 = e2

g2s
(s̄LγµbL)

∑
`(

¯̀γµ`), O10 = e2

g2s
(s̄LγµbL)

∑
`(

¯̀γµγ5`).

The subscripts L and R refer to left- and right-handed fermion fields. We work in the
approximation where the combination (V ∗

usVub) of Cabibbo-Kobayashi-Maskawa (CKM)
matrix elements is neglected. The CKM structure factorizes therefore.
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3 Virtual Corrections to the Operators O1, O2, O7,

O8, O9 and O10

Using the naive dimensional regularization scheme in d = 4−2 ε dimensions, ultraviolet and
infrared singularities both show up as 1/εn poles (n = 1, 2). The ultraviolet singularities
cancel after including the counterterms. Collinear singularities are regularized by retaining
a finite strange quark mass ms. They are cancelled together with the infrared singularities
at the level of the decay width, when taking the bremsstrahlung process b → s `+`−g
into account. Gauge invariance implies that the QCD-corrected matrix elements of the
operators Oi can be written as

〈s `+`−|Oi|b〉 = F̂
(9)
i 〈O9〉tree + F̂

(7)
i 〈O7〉tree ,

where 〈O9〉tree and 〈O7〉tree are the tree-level matrix elements of O9 and O7, respectively.

3.1 Virtual Corrections to O1 and O2

For the calculation of the two-loop diagrams associated with O1 and O2 we mainly used
a combination of Mellin-Barnes technique [6, 7] and of Taylor series expansion in s. For
s < m2

b and s < 4m2
c , most diagrams allow the latter. The unrenormalized form factors

F̂ (7,9) of O1 and O2 are then obtained in the form

F̂ (7,9) =
∑
i,j,l,m

c
(7,9)
ijlm ŝ

i lnj(ŝ)
(
m̂2
c

)l
lnm(m̂c) ,

where m̂c = mc

mb
. The indices i, j,m are non-negative integers and l = −i,−i+ 1

2
,−i+1, .... .

Besides the counterterms from quark field, quark mass and coupling constant (gs) renor-
malization, there are counterterms induced by operator mixing. They are of the form

Ci ·
∑
j

δZij〈Oj〉 with δZij =
αs
4π

[
a01
ij +

a11
ij

ε

]
+

α2
s

(4π)2

[
a02
ij +

a12
ij

ε
+
a22
ij

ε2

]
+O

(
α3
s

)
.

A complete list of the coefficients almij used for our calculation can be found in [6]. The
operator mixing involves also the evanescent operators

O11 = (s̄LγµγνγσT
acL) (c̄Lγ

µγνγσT abL)− 16O1 and

O12 = (s̄LγµγνγσcL) (c̄Lγ
µγνγσbL)− 16O2.

3.2 Virtual Corrections to O7, O8, O9 and O10

The renormalized contributions from the operators O7, O8 and O9 can all be written in
the form

〈s `+`−|CiOi|b〉 = C̃
(0)
i

(
− αs

4π

) [
F

(9)
i 〈Õ9〉tree + F

(7)
i 〈Õ7〉tree

]
,
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with Õi = αs

4π
Oi, C̃

(0)
7,8 = C

(1)
7,8 and C̃

(0)
9 = 4π

αs

(
C

(0)
9 + αs

4π
C

(1)
9

)
.

The formally leading term ∼ g−2
s C

(0)
9 (µb) to the amplitude for b → s `+`− is smaller

than the NLL term ∼ g−2
s

[
g2
s/(16 π2)

]
C

(1)
9 (µb) [8]. We therefore adapt our systematics to

the numerical situation and treat the sum of these two terms as a NLL contribution, as
indicated by the expression for C̃

(0)
9 . The decay amplitude then starts out with a NLL

term.

The contribution from O8 is finite, whereas those from O7 and O9 are not, ie F
(7)
7 and F

(9)
9

suffer from the same infrared divergent part finf.

As the hadronic parts of the operators O9 and O10 are identical, the QCD corrected matrix
element of O10 can easily be obtained from that of O9.

4 Bremsstrahlung Corrections

It is known [3, 4] that the contribution to the inclusive decay width from the interference
between the tree-level and the one-loop matrix elements of O9 and from the corresponding
bremsstrahlung corrections can be written as

dΓ99

dŝ
=
(αem

4π

)2 G2
F m

5
b,pole |V ∗

tsVtb|
2

48π3
(1− ŝ)2 (1 + 2 ŝ)

[
2
∣∣∣C̃(0)

9

∣∣∣2 αs
π
ω9(ŝ)

]
.

Analogous formulas hold true for the contributions from O7 and the interference terms
between the matrix elements of O7 and O9:

dΓ77

dŝ
=
(αem

4π

)2 G2
F m

5
b,pole |V ∗

tsVtb|
2

48π3
(1− ŝ)2 4 (1 + 2/ŝ)

[
2
∣∣∣C̃(0)

7

∣∣∣2 αs
π
ω7(ŝ)

]
,

dΓ79

dŝ
=
(αem

4π

)2 G2
F m

5
b,pole |V ∗

tsVtb|
2

48π3
(1− ŝ)2 12 · 2 αs

π
ω79(ŝ) Re

[
C̃

(0)
7 C̃

(0)
9

]
.

The function ω9(ŝ) ≡ ω(ŝ) can be found eg in [3, 4]. For ω7(ŝ) and ω79(ŝ) see [6]. All other
bremsstrahlung corrections are finite and will be given in [9].

5 Corrections to the Decay Width for B → Xs `+`−

Combining the virtual corrections discussed in Section 3 with the bremsstrahlung contri-
butions considered in Section 4, we find for the decay width

dΓ(b→ Xs`
+`−)

dŝ
=
(αem

4π

)2 G2
F m

5
b,pole |V ∗

tsVtb|
2

48π3
(1− ŝ)2

×
{

(1 + 2 ŝ)

[∣∣∣C̃eff
9

∣∣∣2 +
∣∣∣C̃eff

10

∣∣∣2]+ 4 (1 + 2/ŝ)
∣∣∣C̃eff

7

∣∣∣2 + 12 Re
[
C̃eff

7 C̃
eff∗
9

]}
, (1)

120



6. Numerical Results

where the effective Wilson coefficients C̃eff
7 , C̃eff

9 and C̃eff
10 can be written as

C̃eff
9 =

[
1 +

αs(µ)

π
ω9(ŝ)

](
A9 + T9 h(m̂

2
c , ŝ) + U9 h(1, ŝ) +W9 h(0, ŝ)

)
−αs(µ)

4π

(
C

(0)
1 F

(9)
1 + C

(0)
2 F

(9)
2 + A

(0)
8 F

(9)
8

)
,

C̃eff
7 =

[
1 +

αs(µ)

π
ω7(ŝ)

]
A7 −

αs(µ)

4π

(
C

(0)
1 F

(7)
1 + C

(0)
2 F

(7)
2 + A

(0)
8 F

(7)
8

)
,

C̃eff
10 =

[
1 +

αs(µ)

π
ω9(ŝ)

]
A10 .

The function h(m̂2
c , ŝ) is defined in [5], where also the values of A7, A9, A10, T9, U9 and W9

can be found. C
(0)
1 , C

(0)
2 and A

(0)
8 = C̃

(0,eff)
8 are taken from [7].

6 Numerical Results

The decay width in Eq. (1) has a large uncertainty due to the factor m5
b,pole. Following

common practice, we consider the ratio

Rquark(ŝ) =
1

Γ(b→ Xc e ν̄e)

dΓ(b→ Xs `
+`−)

dŝ
,

in which the factor m5
b,pole drops out. Γ(b→ Xc e ν̄e) can be found eg in [5].

In Fig. 6.1(a) we investigate the dependence of Rquark(ŝ) on the renormalization scale µb
for 0.05 ≤ ŝ ≤ 0.25. The solid lines take the new NNLL contributions into account,
whereas the dashed lines include the NLL results combined with the NNLL corrections to
the matching conditions [5], only. The lower, middle and upper line each correspond to
µb = 2.5, 5 and 10 GeV, respectively, and m̂c = 0.29. From this figure we conclude that
the renormalization scale dependence gets reduced by more than a factor of two. For the
integrated quantity we get

Rquark =

0.25∫
0.05

dŝRquark(ŝ) = (1.25± 0.08)× 10−5 ,

where the error is obtained by varying µb between 2.5 GeV and 10 GeV. Not including our
corrections, one finds Rquark = (1.36±0.18)×10−5 [5]. In other words, the renormalization
scale dependence got reduced from ∼ ±13% to ∼ ±6.5%. The largest uncertainty due to
the input parameters is induced by m̂c. Fig. 6.1(b) illustrates the dependence of Rquark(ŝ)
on m̂c. The dashed, solid and dash-dotted lines correspond to m̂c = 0.27, m̂c = 0.29 and
m̂c = 0.31, respectively, and µb = 5 GeV. We find an uncertainty of ±7.6% due to m̂c.
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(b) Dependence of Rquark(ŝ) on m̂c.

We conclude with the remark that the results presented in this exposition have recently
been included in a systematic description of the corresponding exclusive decay
mode B → K∗`+`− [10, 11].
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ABSTRACT

In a recent paper [1], we presented the calculation of the O(αs) virtual
corrections to b → s `+`− and of those bremsstrahlung terms which are
needed to cancel the infrared divergences. In the present paper we work
out the remainingO(αs) bremsstrahlung corrections to b→ s `+`−, which
do not suffer from infrared and collinear singularities. These new contri-
butions turn out to be small numerically. In addition, we also investigate
the impact of the definition of mc on the numerical results.
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1 Introduction

The inclusive rare decay B → Xs `
+`− has not been observed so far, but is expected to be

measured at the operating B factories after a few years of data taking. The measurement
of its various kinematical distributions, combined with improved data on B → Xs γ, will
imply tight constraints on the extensions of the Standard Model and perhaps even reveal
some new physics.

The main problem of the theoretical description of B → Xs `
+`− is due to the long-distance

contributions from c̄c resonant states. When the invariant mass
√
s of the lepton pair is

close to the mass of a resonance, only model dependent predictions for these long distance
contributions are available today. It is therefore unclear whether the theoretical uncertainty
can be reduced to less than ±20% when integrating over these domains [2].

However, when restricting
√
s to a region below the resonances, the long distance effects

are under control. The corrections to the pure perturbative picture can be analyzed within
the heavy quark effective theory (HQET). In particular, all available studies indicate that
for the region 0.05 < ŝ = s/m2

b < 0.25 the non-perturbative effects are below 10% [3]–[8].
Consequently, the differential decay rate for B → Xs `

+`− can be precisely predicted in
this region using renormalization group improved perturbation theory. It was pointed out
in the literature that the differential decay rate and the forward-backward asymmetry are
particularly sensitive to new physics in this kinematical window [9]–[13].

The next-to-leading logarithmic (NLL) result for B → Xs `
+`− suffers from a relatively

large (±16%) dependence on the matching scale µW [14, 15]. The NNLL corrections to the
Wilson coefficients remove the matching scale dependence to a large extent [16], but leave
a ±13%-dependence on the renormalization scale µb, which is of O(mb). In order to further
improve the theoretical prediction, we have recently calculated the O(αs) virtual two-loop
corrections to the matrix elements 〈s `+`−|Oi|b〉 (i = 1, 2) as well as the virtual O(αs)
one-loop corrections to O7,...,O10 [1]. As some of these corrections suffer from infrared and
collinear singularities, we have added those bremsstrahlung corrections needed to cancel
these singularities. This improvement reduced the renormalization scale dependence by a
factor of 2.

In the present paper we complete the calculation of the bremsstrahlung corrections associ-
ated with the operators O1, O2, O7,...,O10, ie we add those bremsstrahlung terms which are
purely finite and have therefore been omitted in Ref. [1]. We anticipate that the additional
terms have a small impact on the phenomenology of b→ s `+`−.

The paper is organized as follows: In Section 2, we briefly specify the theoretical frame-
work, before, in Section 3, we discuss the organization of the calculation of the finite
bremsstrahlung corrections and review the structure of the virtual corrections and singular
bremsstrahlung contributions, calculated in Ref. [1]. The finite bremsstrahlung corrections
are worked out in Section 4 and Section 5. In Section 6, finally, we investigate the numer-
ical impact of the new corrections on the invariant mass spectrum of the lepton pair. We
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also illustrate the dependence of our results on the definition of the charm quark mass.

2 Effective Hamiltonian

The appropriate tool for studies on weak B mesons decays is the effective Hamiltonian
technique. The effective Hamiltonian is derived from the Standard Model by integrating
out the t quark, the Z0 and the W boson. For the decay channels b→ s `+`− (` = µ, e) it
reads

Heff = −4GF√
2
V ∗
ts Vtb

10∑
i=1

CiOi ,

where Oi are dimension six operators and Ci denote the corresponding Wilson coefficients.
The operators we choose as in [16]:

O1 = (s̄LγµT
acL)(c̄Lγ

µT abL), O2 = (s̄LγµcL)(c̄Lγ
µbL),

O3 = (s̄LγµbL)
∑

q(q̄γ
µq), O4 = (s̄LγµT

abL)
∑

q(q̄γ
µT aq),

O5 = (s̄LγµγνγσbL)
∑

q(q̄γ
µγνγσq), O6 = (s̄LγµγνγσT

abL)
∑

q(q̄γ
µγνγσT aq),

O7 = e
g2s
mb(s̄Lσ

µνbR)Fµν , O8 = 1
gs
mb(s̄Lσ

µνT abR)Ga
µν ,

O9 = e2

g2s
(s̄LγµbL)

∑
`(

¯̀γµ`), O10 = e2

g2s
(s̄LγµbL)

∑
`(

¯̀γµγ5`).

The subscripts L and R refer to left- and right-handed fermion fields. We work in the
approximation where the combination (V ∗

usVub) of Cabibbo-Kobayashi-Maskawa (CKM)
matrix elements is neglected and the CKM structure factorizes.

In the following it is convenient to define the operators Õ7,...,Õ10 according to

Õj =
αs
4π

Oj , (j = 7, ..., 10), (1)

with the corresponding coefficients

C̃j =
4π

αs
Cj , (j = 7, ..., 10). (2)

3 Organization of the Calculation and Previous Re-

sults

In this section we comment on the organization of the calculation of the virtual and brems-
strahlung corrections to the process b→ s `+`− and repeat the results obtained in Ref. [1].

The one-loop diagrams in Fig. 3.1, associated with the four-quark operators O1,...,O6, lead
to contributions which are proportional to the tree level matrix elements of the operators
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Figure 3.1: Diagram a) can be absorbed by replacing the Wilson coefficients C̃7 and C̃9

through C̃mod
7 and C̃mod

9 , respectively. γ∗ denotes an off-shell photon which subsequently
decays into a (`+`−) pair. Similarly, diagram b) is absorbed through the replacement

C̃8 → C̃mod
8 . g denotes an on-shell gluon. The index i runs from 1 to 6. See text for

details.
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Figure 3.2: Diagrams which are automatically taken into account when calculating correc-
tions to C̃

(0,mod)
7 Õ7, C̃

(0,mod)
8 Õ8 and C̃

(0,mod)
9 Õ9.

Õ7, Õ8 and Õ9. Therefore, they can be absorbed by appropriately modifying the Wilson
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Figure 3.3: The two-loop virtual diagrams induced by O1 and O2 that cannot be absorbed
into the Õ7,8,9 contributions by weighing them with the modified Wilson coefficients. The
circle-crosses denote the possible locations where the virtual photon is emitted. The curly
lines represent gluons.
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Figure 3.4: The only two bremsstrahlung diagrams induced by O1 and O2 that cannot
be absorbed into the Õ7,8,9 contributions by weighing them with the modified Wilson
coefficients.

coefficients C̃7, C̃8 and C̃9. The modified coefficients we write as

C̃mod
7 =A7, (3)

C̃mod
8 =A8,

C̃mod
9 =A9 + T9 h(z, ŝ) + U9 h(1, ŝ) +W9 h(0, ŝ) .

The auxiliary quantities Ai, T9, U9 andW9 are linear combinations of the Wilson coefficients
Ci(µ). Their explicit form is relegated to the appendix. The one-loop function h(z, ŝ) is
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Figure 3.5: One-loop virtual O(αs) corrections induced by C̃
(0,mod)
7 Õ7, C̃

(0,mod)
8 Õ8,

C̃
(0,mod)
9 Õ9 and C̃

(0)
10 Õ10. The circle-crosses denote the possible locations for emission of

a virtual photon.
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Figure 3.6: The O(αs) bremsstrahlung diagrams induced by Õ7, Õ9, Õ10 and Õ8. Weighing

the contributions of Õ7, Õ8 and Õ9 with the corresponding modified Wilson coefficients
accounts for the bremsstrahlung diagrams depicted in Fig. 3.2b)–e). The crosses and circle-
crosses denote the possible locations for emission of a bremsstrahlung gluon and a virtual
photon, respectively.

given by [16]

h(z, ŝ) = −4

9
ln(z) +

8

27
+

16

9

z

ŝ

− 2

9

(
2 +

4 z

ŝ

)√∣∣∣∣4 z − ŝ

ŝ

∣∣∣∣ ·


2 arctan
√

ŝ
4 z−ŝ , ŝ < 4 z

ln
(√

ŝ+
√
ŝ−4 z√

ŝ−
√
ŝ−4 z

)
− i π, ŝ > 4 z

. (4)

It is obvious that the modification of the Wilson coefficients automatically accounts also
for the diagrams in Fig. 3.2 when calculating the corresponding corrections to the matrix
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elements

〈s `+`−|C̃(0,mod)
i Õi|b〉 (i = 7, 8, 9),

where C̃
(0,mod)
i are the leading order terms of the modified Wilson coefficients, ie

C̃
(0,mod)
7 =A

(0)
7 ,

C̃
(0,mod)
8 =A

(0)
8 , (5)

C̃
(0,mod)
9 =A

(0)
9 + T

(0)
9 h(z, ŝ) + U

(0)
9 h(1, ŝ) +W

(0)
9 h(0, ŝ) .

For the explicit expressions of the quantities A
(0)
i , T

(0)
9 , U

(0)
9 and W

(0)
9 we refer to the

appendix.

Notice that the virtual and bremsstrahlung corrections of the four-quark operators with
topologies shown in Figs. 3.3 and 3.4, however, have to be calculated explicitly. As the
Wilson coefficients C1 and C2 are much larger than C3,...,C6 we retain the contributions
of these topologies only for O1 and O2 insertions.

In the previous work [1], we systematically calculated the virtual corrections to the matrix

elements of C
(0)
1 O1, C

(0)
2 O2, shown in Fig. 3.3, as well as to those of C̃

(0,mod)
j Õj (j = 7, ..., 9)

and C̃
(0)
10 Õ10 (cf Fig. 3.5). Furthermore, we also took into account the corrections to the

Wilson coefficients calculated in Refs. [16, 17].

We found that the matrix elements of the operators Õ7, Õ9 and Õ10 [cf Fig. 3.5a)–c)]
suffer from infrared and collinear singularities. Consequently, on decay width level the
interferences (Õj, Õk) (j, k = 7, 9, 10) are singular, too. We therefore included the gluon

bremsstrahlung corrections associated with (Õj, Õk) (j, k = 7, 9, 10) in order to get an
infrared finite result for the decay width [cf Fig. 3.6a) and b)].

Taking into account the virtual and bremsstrahlung contributions discussed so far, we
obtain the result presented in Ref. [1]:

dΓ(b→ Xs `
+`−)

dŝ
=
(αem

4π

)2 G2
F m

5
b,pole |V ∗

tsVtb|
2

48π3
(1− ŝ)2

×
{

(1 + 2 ŝ)

(∣∣∣C̃eff
9

∣∣∣2 +
∣∣∣C̃eff

10

∣∣∣2)+ 4 (1 + 2/ŝ)
∣∣∣C̃eff

7

∣∣∣2 + 12 · Re
(
C̃eff

7 C̃
eff∗
9

)}
, (6)

where the effective Wilson coefficients C̃eff
7 , C̃eff

9 and C̃eff
10 are given by [1]
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C̃eff
7 =

(
1 +

αs(µ)

π
ω7(ŝ)

)
A7

− αs(µ)

4π

(
C

(0)
1 F

(7)
1 (ŝ) + C

(0)
2 F

(7)
2 (ŝ) + A

(0)
8 F

(7)
8 (ŝ)

)
, (7)

C̃eff
9 =

(
1 +

αs(µ)

π
ω9(ŝ)

)(
A9 + T9 h(m̂

2
c , ŝ) + U9 h(1, ŝ) +W9 h(0, ŝ)

)
− αs(µ)

4π

(
C

(0)
1 F

(9)
1 (ŝ) + C

(0)
2 F

(9)
2 (ŝ) + A

(0)
8 F

(9)
8 (ŝ)

)
, (8)

C̃eff
10 =

(
1 +

αs(µ)

π
ω9(ŝ)

)
A10. (9)

The quantities C
(0)
1 , C

(0)
2 , A7, A

(0)
8 , A9, A10, T9, U9 and W9 are Wilson coefficients or

linear combinations thereof. We give their analytical expressions and numerical values
in the appendix. The one-loop function h(m̂2

c , ŝ) is given in Eq. (4), while the two-loop

functions F
(7),(9)
1,2 , accounting for the diagrams in Fig. 3.3, and the one-loop functions

F
(7),(9)
8 , corresponding to the diagrams 3.5d) and e), are given in Ref. [1]. The functions

ω7 and ω9, finally, include both virtual and bremsstrahlung corrections associated with Õ7,
Õ9 and Õ10. For details on their construction we again refer to [1].

When calculating the decay width (6), we retain only terms linear in αs (and thus in ω7, ω9)

in the expressions for |C̃eff
7 |2, |C̃eff

9 |2 and |C̃eff
10 |2. In the interference term Re

[
C̃eff

7 C̃
eff∗
9

]
too,

we keep only linear contributions in αs. By construction one has to make the replacements
ω9 → ω79 and ω7 → ω79 in this term.

The functions ω7, ω9 and ω79 read

ω7(ŝ) = −8

3
ln

(
µ

mb

)
− 4

3
Li(ŝ)− 2

9
π2 − 2

3
ln(ŝ) ln(1− ŝ)

− 1

3

8 + ŝ

2 + ŝ
ln(1− ŝ)− 2

3

ŝ (2− 2 ŝ− ŝ2)

(1− ŝ)2 (2 + ŝ)
ln(ŝ)− 1

18

16− 11 ŝ− 17 ŝ2

(2 + ŝ) (1− ŝ)
,

(10)

ω9(ŝ) = −4

3
Li(ŝ)− 2

3
ln(1− ŝ) ln(ŝ)− 2

9
π2 − 5 + 4 ŝ

3(1 + 2 ŝ)
ln(1− ŝ)

− 2 ŝ (1 + ŝ)(1− 2 ŝ)

3 (1− ŝ)2(1 + 2 ŝ)
ln(ŝ) +

5 + 9 ŝ− 6 ŝ2

6 (1− ŝ)(1 + 2 ŝ)
, (11)
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ω79(ŝ) = −4

3
ln

(
µ

mb

)
− 4

3
Li(ŝ)− 2

9
π2 − 2

3
ln(ŝ) ln(1− ŝ)

− 1

9

2 + 7 ŝ

ŝ
ln(1− ŝ)− 2

9

ŝ (3− 2 ŝ)

(1− ŝ)2 ln(ŝ) +
1

18

5− 9 ŝ

1− ŝ
. (12)

Summary
The bremsstrahlung corrections associated with the interferences(

C̃
(0,mod)
j Õj, C̃

(0,mod)
k Õk

)
, (j, k = 7, 9, 10),

are already included in formula (6). The remaining bremsstrahlung corrections, which are
infrared finite, we derive in Section 4 and 5. In Section 4 we discuss the contributions of
the interferences (

C̃
(0,mod)
8 Õ8, C̃

(0,mod)
k Õk

)
, (k = 7, 8, 9, 10) ,

which we call to be of type A. There is no contribution from k = 10 because of the Dirac
structures of the involved operators. Section 5 is devoted to the interferences(
C

(0)
i Oi, C

(0)
j Oj

)
, (i, j = 1, 2) and

(
C

(0)
i Oi, C̃

(0,mod)
k Õk

)
, (i = 1, 2; k = 7, 8, 9, 10).

Accordingly, we call these the type B terms. Again, the contributions for k = 10 vanish
due to the Dirac structures of the operators involved.

4 Finite Bremsstrahlung Contributions of Type A

The bremsstrahlung contributions taken into account by introducing the functions ωi(ŝ)
cancel the infrared divergences associated with the virtual corrections. All other brems-
strahlung terms are finite. This allows us to perform their calculation directly in d = 4
dimensions.

The bremsstrahlung contributions from Õ7− Õ8 and Õ8− Õ9 interference terms as well as
the Õ8 − Õ8 term oppose no difficulties. The sum of these three parts can be written as

dΓBrems,A

dŝ
=
dΓBrems

78

dŝ
+
dΓBrems

89

dŝ
+
dΓBrems

88

dŝ
=(αem

4π

)2 ( αs
4π

) m5
b,pole |V ∗

ts Vtb|2G2
F

48π3
×
(
2 Re

[
c78 τ78 + c89 τ89

]
+ c88 τ88

)
. (13)

The coefficients cij are given by

c78 = CF · C̃(0,eff)
7 C̃

(0,eff)∗
8 , c89 = CF · C̃(0,eff)

8 C̃
(0,eff)∗
9 , c88 = CF ·

∣∣∣C̃(0,eff)
8

∣∣∣2 , (14)
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while the quantities τij read

τ78 =
8

9 ŝ

{
25− 2π2 − 27 ŝ+ 3 ŝ2 − ŝ3 + 12

(
ŝ+ ŝ2

)
ln(ŝ)

+ 6

(
π

2
− arctan

[
2− 4 ŝ+ ŝ2

(2− ŝ)
√
ŝ
√

4− ŝ

])2

− 24 Re

(
Li

[
ŝ− i

√
ŝ
√

4− ŝ

2

])

− 12

(
(1− ŝ)

√
ŝ
√

4− ŝ− 2 arctan

[√
ŝ
√

4− ŝ

2− ŝ

])

×

(
arctan

[√
4− ŝ

ŝ

]
− arctan

[√
ŝ
√

4− ŝ

2− ŝ

])}
, (15)

τ88 =
4

27 ŝ

{
− 8π2 + (1− ŝ)

(
77− ŝ− 4 ŝ2

)
− 24 Li(1− ŝ)

+ 3

(
10− 4 ŝ− 9 ŝ2 + 8 ln

[ √
ŝ

1− ŝ

])
ln(ŝ) + 48 Re

(
Li

[
3− ŝ

2
+ i

(1− ŝ)
√

4− ŝ

2
√
ŝ

])

− 6

(
20 ŝ+ 10 ŝ2 − 3 ŝ3

√
ŝ
√

4− ŝ
− 8π + 8 arctan

[√
4− ŝ

ŝ

])

×

(
arctan

[√
4− ŝ

ŝ

]
− arctan

[√
ŝ
√

4− ŝ

2− ŝ

])}
, (16)

τ89 =
2

3

{
ŝ (4− ŝ)− 3− 4 ln(ŝ)

(
1− ŝ− ŝ2

)
− 8 Re

(
Li

[
ŝ

2
+ i

√
ŝ
√

4− ŝ

2

]
− Li

[
−2 + ŝ(4− ŝ)

2
+ i

(2− ŝ)
√
ŝ
√

4− ŝ

2

])

+ 4

(
ŝ2

√
4− ŝ

ŝ
+ 2 arctan

[√
ŝ
√

4− ŝ

2− ŝ

])

×

(
arctan

[√
4− ŝ

ŝ

]
− arctan

[√
ŝ
√

4− ŝ

2− ŝ

])}
. (17)
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5 Finite Bremsstrahlung Contributions of Type B

In this section we consider the bremsstrahlung contributions from O1 and O2 and interfer-
ence terms with Õ7, Õ8, Õ9 and Õ10. As mentioned before, interferences with Õ10 vanish
due to the Dirac structures of the operators.

The bremsstrahlung contributions discussed in this section all involve the matrix elements
associated with the two diagrams depicted in Fig. 3.4. Their sum, J̄αβ, is given by

J̄αβ =
e gsQu

16π2

[
E(α, β, r) ∆̄i5 + E(α, β, q) ∆̄i6 − E(β, r, q)

rα
q ·r

∆̄i23

−E(α, r, q)
qβ
q ·r

∆̄i26 − E(β, r, q)
qα
q ·r

∆̄i27

]
L
λ

2
, (18)

where q and r denote the momenta of the virtual photon and of the gluon, respectively.
The index α will be contracted with the photon propagator, whereas β is contracted with
the polarization vector εβ(r) of the gluon. J̄αβ and ∆̄ik are obtained from Jαβ and ∆ik
[1], respectively, by setting r2 = 0 and dropping terms proportional to rβ. The matrix
E(α, β, r) is defined as

E(α, β, r) =
1

2
(γαγβr/− r/γβγα). (19)

Due to Ward identities, the quantities ∆̄ik are not independent of one another. Namely,

qαJ̄αβ = 0 and rβJ̄αβ = 0

imply that ∆̄i5 and ∆̄i6 can be expressed as

∆̄i5 = ∆̄i23 +
q2

q ·r
∆̄i27 , ∆̄i6 = ∆̄i26 . (20)

As in addition ∆̄i26 = −∆̄i23, the bremsstrahlung matrix elements depend on ∆̄i23 and
∆̄i27, only. In d = 4 dimensions we find

∆̄i23 = 8 (q ·r)
∫ 1

0

dx dy
x y(1− y)2

C
,

∆̄i27 = 8 (q ·r)
∫ 1

0

dx dy
y (1− y)2

C
, (21)

where
C = m2

c − 2x y(1− y)(q ·r)− q2 y (1− y)− i δ.

In the rest frame of the b quark and for fixed ŝ = q2/m2
b , the phase space integrals which

one encounters in the calculation of dΓBrems,B/dŝ can be reduced to a two-dimensional
integral over Êr = Er/mb and Ês = Es/mb, where Er and Es are the energy of the gluon
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and the s quark, respectively. In the following it is useful to introduce the integration
variable w = 1− 2Ês instead of Ês. The integration limits are then given by

Êr ∈
[
w − ŝ

2
,
w − ŝ

2w

]
and w ∈ [ŝ, 1].

For fixed values of ŝ, the quantities ∆̄i23 and ∆̄i27 depend only on the scalar product q ·r,
which, in the rest frame of the b quark, is given by (w − ŝ)m2

b/2. The integration over
Êr turns out to be of rational kind and can be performed analytically. The remaining
integration over w, however, is more complicated and is done numerically. The result can
be written as

dΓBrems,B

dŝ
=
(αem

4π

)2 ( αs
4π

) G2
F m

5
b,pole |V ∗

ts Vtb|2

48π3
×

1∫
ŝ

dw
[
(c11 + c12 + c22) τ22 + 2 Re

[
(c17 + c27) τ27 + (c18 + c28) τ28 + (c19 + c29) τ29

]]
. (22)

The quantities τij, expressed in terms of ∆̄i23 and ∆̄i27, read

τ22 =
8

27

(w − ŝ)(1− w)2

ŝ w3
×
{[

3w2 + 2 ŝ2(2 + w)− ŝ w (5− 2w)
] ∣∣∆̄i23∣∣2 +[

2 ŝ2 (2 + w) + ŝ w (1 + 2w)
] ∣∣∆̄i27

∣∣2 + 4 ŝ
[
w (1− w)− ŝ (2 + w)

]
· Re

[
∆̄i23∆̄i

∗
27

]}
, (23)

τ27 =
8

3

1

ŝ w
×
{[

(1− w)
(
4 ŝ2 − ŝ w + w2

)
+ ŝ w (4 + ŝ− w) ln(w)

]
∆̄i23

−
[
4 ŝ2 (1− w) + ŝ w (4 + ŝ− w) ln(w)

]
∆̄i27

}
, (24)

τ28 =
8

9

1

ŝ w (w − ŝ)
×

{[
(w − s)2(2 ŝ− w)(1− w)

]
∆̄i23 −

[
2 ŝ (w − ŝ)2(1− w)

]
∆̄i27

+ ŝ w
[
(1 + 2 ŝ− 2w)∆̄i23 − 2 (1 + ŝ− w)∆̄i27

]
· ln
[

ŝ

(1 + ŝ− w)(w2 + ŝ (1− w))

]}
,

(25)

τ29 =
4

3

1

w
×
{[

2 ŝ(1− w)(ŝ+ w) + 4 ŝ w ln(w)
]
∆̄i23−[

2 ŝ(1− w)(ŝ+ w) + w(3 ŝ+ w) ln(w)
]
∆̄i27

}
. (26)
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The coefficients cij in Eq. (22) include the dependence on the Wilson coefficients and the
color factors. Explicitly, they read

c11 =Cτ1 ·
∣∣∣C(0)

1

∣∣∣2 , c17 =Cτ2 · C
(0)
1 C̃

(0,eff)∗
7 , c27 =CF · C(0)

2 C̃
(0,eff)∗
7 ,

c12 =Cτ2 · 2 Re
[
C

(0)
1 C

(0)∗
2

]
, c18 =Cτ2 · C

(0)
1 C̃

(0,eff)∗
8 , c28 =CF · C(0)

2 C̃
(0,eff)∗
8 , (27)

c22 =CF ·
∣∣∣C(0)

2

∣∣∣2 , c19 =Cτ2 · C
(0)
1 C̃

(0,eff)∗
9 , c29 =CF · C(0)

2 C̃
(0,eff)∗
9 ,

where the color factors CF , Cτ1 and Cτ2 arise from the following color structures:∑
a

T aT a = CF1, CF =
N2
c − 1

2Nc

,

∑
a,b,c

T aT cT aT bT cT b = Cτ11, Cτ1 =
N2
c − 1

8N3
c

,

and ∑
a,b

T aT bT aT b = Cτ21, Cτ2 = −N
2
c − 1

4N2
c

.

Finally, we list the explicit formulas for ∆̄i23 and ∆̄i27 expressed as a function of ŝ and the
integration variable w. We obtain

∆̄i23 = −2 +
4

w − ŝ

[
z G−1

(
ŝ

z

)
− z G−1

(w
z

)
− ŝ

2
G0

(
ŝ

z

)
+
ŝ

2
G0

(w
z

)]
, (28)

∆̄i27 = 2

[
G0

(
ŝ

z

)
−G0

(w
z

)]
, (29)

where the functions Gk(t) (k ≥ −1) are defined through the integral

Gk(t) =

1∫
0

dx xk ln
[
1− t x(1− x)− i δ

]
, G1(t) =

1

2
G0(t).

Explicitly, the functions G−1(t) and G0(t) read

G−1(t) =


2π arctan

(√
4−t
t

)
− π2

2
− 2 arctan2

(√
4−t
t

)
, t < 4

−2 iπ ln
(√

t+
√
t−4

2

)
− π2

2
+ 2 ln2

(√
t+
√
t−4

2

)
, t > 4

, (30)

G0(t) =


π
√

4−t
t
− 2− 2

√
4−t
t

arctan
(√

4−t
t

)
, t < 4

−iπ
√

t−4
t
− 2 + 2

√
t−4
t

ln
(√

t+
√
t−4

2

)
, t > 4

. (31)
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6 Numerical Results

First, we investigate the numerical impact of the finite bremsstrahlung corrections [see
Eqs. (13) and (22)] on the dilepton invariant mass spectrum. Following common practice,
we consider the ratio

Rquark(ŝ) =
1

Γ(b→ Xc e ν̄e)

dΓ(b→ s `+`−)

dŝ
, (32)

in which the factor m5
b,pole drops out. The explicit expression for the semileptonic decay

width Γ(b→ Xc e ν̄e) reads

Γ(b→ Xc e ν̄e) =
G2
F m

5
b,pole

192π3
|Vcb|2 · g

(
m2
c,pole

m2
b,pole

)
·K
(
m2
c

m2
b

)
, (33)

where g(z) = 1− 8 z + 8 z3 − z4 − 12 z2 ln(z) is the phase space factor, and

K(z) = 1− 2αs(mb)

3π

f(z)

g(z)
(34)

incorporates the next-to-leading QCD correction to the semi-leptonic decay [18]. The
function f(z) has been calculated analytically in Ref. [19]. It reads

f(z) =− (1− z2)

(
25

4
− 239

3
z +

25

4
z2

)
+ z ln(z)

(
20 + 90 z − 4

3
z2 +

17

3
z3

)
+ z2 ln2(z)

(
36 + z2

)
+
(
1− z2

) (17

3
− 64

3
z +

17

3
z2

)
ln(1− z)

− 4
(
1 + 30 z2 + z4

)
ln(z) ln(1− z)−

(
1 + 16 z2 + z4

) (
6 Li(z)− π2

)
− 32 z3/2(1 + z)

[
π2 − 4 Li(

√
z) + 4 Li(−

√
z)− 2 ln(z) ln

(
1−

√
z

1 +
√
z

)]
. (35)

We stress that the function f(z) refers to on-shell renormalization of the charm quark
mass.

In Fig. 6.1 we consider the contribution ∆Rquark(ŝ), which is due to the finite brems-
strahlung corrections in Eqs. (13) and (22), for three values of the renormalization scale
(µ = 2.5, 5 and 10 GeV) and for fixed valuemc/mb = 0.29. The values of all the other input
parameters are as in Ref. [1]. In Fig. 6.2 we combine the new corrections with the previous
results. The solid lines show the ratio Rquark(ŝ), including the new corrections, for the val-
ues µ = 10 GeV (uppermost curve), µ = 5 GeV (middle curve) and µ = 2.5 GeV (lowest
curve) and for fixed value mc/mb = 0.29. The dashed lines represent the corresponding
results without the new corrections. We find that for ŝ = 0.05 the new corrections increase
the ratio Rquark(ŝ) by ∼ 3%, while for larger values of ŝ their impact is even smaller. When
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Figure 6.1: The new contribution
∆Rquark(ŝ) due to finite bremsstrahlung
corrections for µ = 2.5 GeV (uppermost
curve), µ = 5 GeV (middle curve) and
µ = 10 GeV (lowest curve) and mc/mb =
0.29.
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Figure 6.2: The solid curves show the ra-
tio Rquark(ŝ) including the finite brems-
strahlung corrections while the dash-
dotted curves show the corresponding re-
sults without the new corrections. The
uppermost curves (solid and dash-dotted)
correspond to µ = 10 GeV, the middle
curves to µ = 5 GeV and the lowest curves
to µ = 2.5 GeV. mc/mb = 0.29.

including the finite bremsstrahlung corrections we obtain

Rquark =

0.25∫
0.05

dŝRquark(ŝ) =
(
1.27± 0.08(µ)

)
× 10−5

for the integrated quantity Rquark. The error is obtained by varying µ between 2.5 GeV
and 10 GeV. For comparison, the corresponding result without the finite bremsstrahlung
correction is Rquark(ŝ) =

(
1.25± 0.08(µ)

)
× 10−5 [1].

Among the errors on Rquark(ŝ) due to uncertainties in the input parameters, the one related
to the charm quark mass is by far the largest. We therefore only comment on this error. In
principle, the uncertainties induced by the charm quark mass have two sources. First, it is
unclear whether mc in the virtual- and bremsstrahlung corrections should be interpreted
as the pole mass or the MS mass (at an appropriate scale). Secondly, the question arises
what the numerical value of mc is, once a choice concerning the definition of mc has been
made.
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Figure 6.3: Rquark(ŝ) for various values
and definitions of mc: The three bands
are obtained by setting mpole

c /mpole
b =0.31

(uppermost), 0.29 (middle) and 0.27 (low-
est) in Γ(b → Xc e ν̄e). In the rare de-

cay b → Xs `
+`− we set mMS

c /mpole
b =

0.18, 0.22, 0.26. This leads to three curves
all within a narrow band. See text.

To illustrate these problems more clearly, it is useful to first consider the process B → Xsγ.
There, the one-loop matrix elements of O1 and O2 vanish, implying that the charm quark
mass dependence only enters at O(αs). Formally, one can interpret mc in these O(αs)
expressions to be the pole mass or the MS mass because the difference is of higher order
in αs. Nevertheless, it has been argued in the literature [20] that the choice mMS

c (µ)
with µ ∈ [mc,mb] seems more reasonable than mpole

c (which was used in all the previous
analysis) due to the fact that the largest charm quark mass dependence comes from the real
part of the two-loop matrix elements of O1 and O2, where the charm quarks are usually
off-shell, with a momentum scale set by mpole

b (or some seizable fraction of it). It was
shown in Ref. [20] that the definition of the charm quark mass leads to a relatively large
uncertainty in the branching ratio: Changing mc/mb in Γ(B → Xsγ) from 0.29 ± 0.02 to

0.22± 0.04, ie from mpole
c /mpole

b to mMS
c /mpole

b (with µ ∈ [mc,mb]), causes an enhancement
of BR(B → Xsγ) by ∼ 11%.

In the process B → Xs `
+`− this problem is less severe because mc enters already the

one-loop diagrams [ie at O(α0
s)] associated with O1 and O2. As the two-loop calculation

requires the renormalization of mc, the definition of mc has to be specified. Therefore, the
two-loop result explicitly depends on the definition of the charm quark mass. This can be
seen from [1]. For the pole mass definition, the results for the two-loop matrix elements of

O1 and O2, encoded in F
(7),(9)
1,2 , are given in Eqs. (54)–(56), while those corresponding to

the MS definition are obtained by adding the terms ∆F
ct(9)
1,2,mcren given in Eq. (49).

In the following, we investigate the impact of pole- vs MS definition of mc in the rare decay
b→ Xs `

+`− on the ratio Rquark(ŝ). In the semileptonic decay b→ Xc e ν̄e the charm quark
is basically on-shell. Therefore, we always use the pole mass definition for the charm quark
mass in Γ(b → Xc e ν̄e), which enters Rquark(ŝ). In Fig. 6.3 we set mpole

c /mpole
b equal to

0.31, 0.29 and 0.27 in the decay width Γ(b → Xc e ν̄e). In the rare decay b → Xs `
+`−,

on the other hand, we use the MS definition for mc, and put mMS
c /mpole

b = 0.18, 0.22 and

0.26 (independently of mpole
c /mpole

b , to be on the conservative side). This leads, for a given

value of mpole
c /mpole

b , to three curves which form a narrow band. The uppermost band
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Figure 6.4: Rquark(ŝ) for various values
and definitions ofmc: The solid curves are
obtained by setting mpole

c /mpole
b = 0.33

(uppermost), 0.31, 0.29, 0.27 and 0.25
(lowest) in the rare- and the semileptonic
decay. The dashed lines are obtained by
taking mMS

c /mpole
b = 0.22 in the rare de-

cay and mpole
c /mpole

b = 0.31, 0.29 and 0.27
in Γ(b→ Xc e ν̄e). See text.

corresponds to mpole
c /mpole

b = 0.31, the middle to 0.29 and the lowest to 0.27 . The curves

with the strange behavior for ŝ > 0.13 all belong to the lowest value mMS
c /mpole

b = 0.18 .
As the result for the two-loop corrections was derived in expanded form, which only holds
for ŝ < 4m2

c/m
2
b , the strange behavior illustrates that, for mc/mb = 0.18, the result is

not valid for ŝ > 0.13. In Fig. 6.4 the three middle solid curves are obtained by adopting
the pole mass definition of mc, both in the rare and in the semileptonic decay. They
correspond to mpole

c /mpole
b = 0.31 , 0.29, 0.27. The dashed curves, on the other hand,

are obtained when the MS definition with mMS
c /mpole

b = 0.22 is used in the rare decay
width. One finds that for ŝ > 0.06 the results for Rquark(ŝ) are somewhat larger when
using the pole mass definition of mc in the rare decay. For values below ŝ < 0.06 the
situation is reversed and thus the same as for b → Xsγ [20]. Again, the strange behavior
of the dashed curves indicates that, for mc/mb = 0.22, the expanded formulas become
unreliable for values of ŝ > 0.19 . The thick solid lines are obtained by adopting the
pole mass definition on the whole and correspond to mc/mb = 0.33 (upper) and 0.25
(lower). In summary, the figure shows that the quark mass uncertainties can effectively
be estimated by working with the pole mass definition throughout, provided one takes the
rather conservative range 0.25 ≤ mpole

c /mpole
b ≤ 0.33 . Finally, in Fig. 6.5 we show Rquark(ŝ)

in the full range ŝ ∈ [0.05, 0.25] for mpole
c /mpole

b ∈ [0.25, 0.33]. Note that for these values of
mc/mb the expanded formulas hold just up to ŝ = 0.25 .

Comparing Fig. 6.2 with Fig. 6.5, we find that the uncertainty due tomc/mb is clearly larger
than the leftover µ dependence. Varying mc/mb between 0.25 and 0.33, the corresponding
uncertainty amounts to ±15%.

To conclude: We have calculated the finite gluon bremsstrahlung corrections of O(αs) to
Γ(b → s `+`−), taking into account the contributions of the operators O1, O2, O7, O8, O9

and O10. We have worked out the numerical impact of the new corrections on the invariant
mass spectrum of the lepton pair in the range ŝ ∈ [0.05, 0.25] and found an increase of
about 3% for ŝ = 0.05 and even less for larger values of ŝ. Furthermore, we investigated
the uncertainties of Rquark(ŝ) due to the definition and numerical uncertainties of the
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Figure 6.5: Rquark(ŝ) formpole
c /mpole

b =0.33
(uppermost), 0.31, 0.29, 0.27 and 0.25
(lowest) in the rare- and the semileptonic
decay in the full range ŝ ∈ [0.05, 0.25].

charm quark mass. We found that these errors can be reliably estimated when working
with the pole mass definition of mc, provided one takes the rather conservative range
0.25 ≤ mpole

c /mpole
b ≤ 0.33.
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A Auxiliary Quantities Ai, T9, U9 and W9

The auxiliary quantities Ai, T9, U9 and W9, appearing in the modified Wilson coefficients
in Eq. (3) and in the effective Wilson coefficients in Eqs. (7)–(9) are the following linear
combinations of the Wilson coefficients Ci(µ) [12, 16]:

A7 =
4π

αs(µ)
C7(µ)− 1

3
C3(µ)− 4

9
C4(µ)− 20

3
C5(µ)− 80

9
C6(µ) ,

A8 =
4π

αs(µ)
C8(µ) + C3(µ)− 1

6
C4(µ) + 20C5(µ)− 10

3
C6(µ) ,

A9 =
4π

αs(µ)
C9(µ) +

6∑
i=1

Ci(µ) γ
(0)
i9 ln

(
mb

µ

)
+

4

3
C3(µ) +

64

9
C5(µ) +

64

27
C6(µ) ,

A10 =
4π

αs(µ)
C10(µ) , (36)

T9 =
4

3
C1(µ) + C2(µ) + 6C3(µ) + 60C5(µ) ,

U9 =− 7

2
C3(µ)− 2

3
C4(µ)− 38C5(µ)− 32

3
C6(µ) ,

W9 =− 1

2
C3(µ)− 2

3
C4(µ)− 8C5(µ)− 32

3
C6(µ) .

The elements γ
(0)
i9 can be found in [16], while the loop-function h(z, ŝ) is given in Eq. (4).

In the contributions which explicitly involve virtual or bremsstrahlung corrections only the
leading order coefficients A

(0)
i , T

(0)
9 , U

(0)
9 and W

(0)
9 enter. They are given by

A
(0)
7 = C

(1)
7 − 1

3
C

(0)
3 − 4

9
C

(0)
4 − 20

3
C

(0)
5 − 80

9
C

(0)
6 ,

A
(0)
8 = C

(1)
8 + C

(0)
3 − 1

6
C

(0)
4 + 20C

(0)
5 − 10

3
C

(0)
6 ,

A
(0)
9 =

4π

αs

(
C

(0)
9 +

αs
4π

C
(1)
9

)
+

6∑
i=1

C
(0)
i γ

(0)
i9 ln

(
mb

µ

)
+

4

3
C

(0)
3 +

64

9
C

(0)
5 +

64

27
C

(0)
6 ,

A
(0)
10 =C

(1)
10 , (37)

T
(0)
9 =

4

3
C

(0)
1 + C

(0)
2 + 6C

(0)
3 + 60C

(0)
5 ,

U
(0)
9 =− 7

2
C

(0)
3 − 2

3
C

(0)
4 − 38C

(0)
5 − 32

3
C

(0)
6 ,

W
(0)
9 =− 1

2
C

(0)
3 − 2

3
C

(0)
4 − 8C

(0)
5 − 32

3
C

(0)
6 .

We list the leading and next-to-leading order contributions to the quantities Ai, T9, U9 and
W9 in Tab. A.1.
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µ 2.5 GeV 5 GeV 10 GeV

αs 0.267 0.215 0.180

C
(0)
1 −0.697 −0.487 −0.326

C
(0)
2 1.046 1.024 1.011(
A

(0)
7 , A

(1)
7

)
(−0.360, 0.031) (−0.321, 0.019) (−0.287, 0.008)

A
(0)
8 −0.164 −0.148 −0.134(
A

(0)
9 , A

(1)
9

)
(4.241, − 0.170) (4.129, 0.013) (4.131, 0.155)(

T
(0)
9 , T

(1)
9

)
(0.115, 0.278) (0.374, 0.251) (0.576, 0.231)(

U
(0)
9 , U

(1)
9

)
(0.045, 0.023) (0.032, 0.016) (0.022, 0.011)(

W
(0)
9 , W

(1)
9

)
(0.044, 0.016) (0.032, 0.012) (0.022, 0.009)(

A
(0)
10 , A

(1)
10

)
(−4.372, 0.135) (−4.372, 0.135) (−4.372, 0.135)

Table A.1: Coefficients appearing Eqs. (7)–(9) for µ = 2.5 GeV, µ = 5 GeV and µ =
10 GeV. For αs(µ) (in the MS scheme) we used the two-loop expression with five flavors
and αs(mZ) = 0.119 . The entries correspond to the pole top quark mass mt = 174 GeV.
The superscript (0) refers to lowest order quantities.
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QCD Corrections to b → d `+`−





QCD Corrections to b → d `+`− in the
Standard Model

ABSTRACT

We present the calculation of the virtual O(αs) corrections to the in-
clusive semileptonic rare decay b → d `+`−. The calculation of these
contributions is an extension to the b→ s `+`− corrections [1], ie the di-
agrams induced by the four-quark operators O1 and O2 with an u quark
running in the quark loop are no longer Cabibbo suppressed. We discuss
in detail the calculation of the corresponding matrix elements. The ana-
lytic results for the process b→ d `+`− are represented as expansions in
the small parameters ŝ = s/m2

b , z = m2
c/m

2
b and s/(4m2

c), where s is the
invariant mass squared of the lepton pair. We also include the complete
set of O(αs) bremsstrahlung contributions.



Part VI: QCD Corrections to b→ d `+`−

1 Introduction

For the transition b→ s `+`− the contributions with an u quark running in the fermion loop
is Cabibbo suppressed, ie |λ′u| � |λ′c|, |λ′t|, where λ′q = V ∗

qsVqb. It is a save approximation
to set |λ′u| = 0. In the case of b→ d `+`−, this is no longer true, and we have to calculate
the u quark diagrams as well: |λu| ≈ |λc| ≈ |λt|, λq = V ∗

qdVqb. Setting mu = 0 seems to
be a substantial simplification of the calculations because they involve one scale less than
c quark diagrams. This is definitely true for some of the diagrams. Others, however, get
quite more involved because the techniques we used for their counterparts [1], where we
could use the ratio ŝ/(4 z) as an expansion parameter, fail. The quantities ŝ and z are
given by ŝ = s/m2

b and z = m2
c/m

2
b , where s denotes the invariant mass squared of the

lepton pair.

Another problem arising in the analysis of b→ d `+`− are the large resonant contributions
due to ūu intermediate states. Unlike in the b → s `+`− case, the threshold of these
resonances lies rather low. Therefore, we may no longer evade integrating over these
domains, where only model dependent predictions are available.

A big part of the work for b→ d `+`− has been completed by now. However, the results can
not yet be presented in paper form. Therefore, in this part, we merely give an account on
what has been done so far and introduce two methods used to solve some of the integrals.

2 Effective Hamiltonian

The effective Hamiltonian mediating the transition b → d `+`− or b → d γ∗, respectively,
is given by

Heff =
4GF√

2

[
2∑
i=1

Ci(λcO
c
i + λuO

u
i )− λt

10∑
i=3

CiOi

]
,

with λq = V ∗
qdVqb. The operator basis we choose accordingly to [12]

Ou
1 = (d̄LγµT

auL)(ūLγ
µT abL), Ou

2 = (d̄LγµuL)(ūLγ
µbL),

Oc
1 = (d̄LγµT

acL)(c̄Lγ
µT abL), Oc

2 = (d̄LγµcL)(c̄Lγ
µbL),

O3 = (d̄LγµbL)
∑

q(q̄γ
µq), O4 = (d̄LγµT

abL)
∑

q(q̄γ
µT aq),

O5 = (d̄LγµγνγρbL)
∑

q(q̄γ
µγνγρq), O6 = (d̄LγµγνγρT

abL)
∑

q(q̄γ
µγνγρT aq),

O7 = e
g2s
mb(d̄Lσ

µνbR)Fµν , O8 = 1
gs
mb(d̄Lσ

µνT abR)Ga
µν ,

O9 = e2

g2s
(d̄LγµbL)

∑
`(

¯̀γµ`), O10 = e2

g2s
(d̄LγµbL)

∑
`(

¯̀γµγ5`),

(1)

where the subscripts L and R refer to left- and right-handed components of the fermion
fields, respectively.
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Figure 3.1: Complete list of two-loop Feynman diagrams for b→ d γ∗ associated with the
operators Ou,c

1 and Ou,c
2 . The fermions (b, d, u and c quarks) are represented by solid lines,

whereas the curly lines represent gluons. The circle-crosses denote the possible locations
where the virtual photon (which then splits into a lepton pair) is emitted.

The factors 1/g2
s in the definition of the operators O7, O9 and O10 as well as the factor

1/gs present in O8 have been chosen by Misiak [2] in order to simplify the organization
of the calculation. With these definitions, the one-loop anomalous dimensions [needed
for a leading logarithmic (LL) calculation] of the operators Oi are all proportional to
g2
s , while two-loop anomalous dimensions [needed for a next-to-leading logarithmic (NLL)

calculation] are proportional to g4
s , etc.

The formally leading term ∼ (1/g2
s)C

(0)
9 (µb) to the amplitude for b → d `+`− is smaller

than the NLL term ∼ (1/g2
s)
[
g2
s/(16 π2)

]
C

(1)
9 (µb) [3]. We adapt our systematics to the

numerical situation and treat the sum of these two terms as a NLL contribution. This is,
admittedly some abuse of language, because the decay amplitude then starts out with a
term which is called NLL.

3 Virtual O(αs) Corrections to the Current-Current

Operators Ou,c
1 and Ou,c

2

In this section we present the calculation of the virtual O(αs) corrections to the matrix
elements of the current-current operators Ou,c

1 and Ou,c
2 . Using the naive dimensional

regularization scheme (NDR) in d = 4 − 2 ε dimensions, both ultraviolet and infrared
singularities show up as 1/εn poles (n = 1, 2). The ultraviolet singularities cancel after
including the counterterms. Collinear singularities are regularized by retaining a finite
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down quark mass md. They are cancelled together with the infrared singularities at the
level of the decay width when taking the bremsstrahlung process b→ d `+`−g into account.
Gauge invariance implies that the QCD corrected matrix elements of the operators Oi can
be written as

〈d `+`−|Oi|b〉 = F̂
(9)
i 〈O9〉tree + F̂

(7)
i 〈O7〉tree , (2)

where 〈O9〉tree and 〈O7〉tree are the tree-level matrix elements of O9 and O7, respectively.
Equivalently, we may write

〈d `+`−|Oi|b〉 = − αs
4π

[
F

(9)
i 〈Õ9〉tree + F

(7)
i 〈Õ7〉tree

]
, (3)

where the operators Õ7 and Õ9 are defined as

Õ7 =
αs
4π

O7, Õ9 =
αs
4π

O9. (4)

We present the final results for the QCD corrected matrix elements in the form of Eq. (3).

The full set of the diagrams contributing at O(αs) to the matrix elements

M q
i = 〈d `+`−|Oq

i |b〉 (i = 1, 2; q = u, c) (5)

is shown in Fig. 3.1. As indicated, the diagrams associated with Ou,c
1 and Ou,c

2 are topo-
logically identical. They differ only by the color structure. While the matrix elements of
the operator Ou,c

2 all involve the color structure∑
a

T aT a = CF1, CF =
N2
c − 1

2Nc

,

there are two possible color structures for the corresponding diagrams of Ou,c
1 , viz

τ1 =
∑
a,b

T aT bT aT b and τ2 =
∑
a,b

T aT bT bT a.

The structure τ1 appears in diagrams 3.1a)-d), and τ2 enters diagrams 3.1e) and 3.1f).
Using the relation ∑

a

T aαβT
a
γδ = − 1

2Nc

δαβδγδ +
1

2
δαδδβγ,

we find that τ1 = Cτ11 and τ2 = Cτ21, with

Cτ1 = −N
2
c − 1

4N2
c

and Cτ2 =
(N2

c − 1)
2

4N2
c

.

Inserting Nc = 3, the color factors are CF = 4
3
, Cτ1 = −2

9
and Cτ2 = 16

9
. The contributions

from Ou,c
1 are obtained by multiplying those from Ou,c

2 by the appropriate factors, ie by
Cτ1/CF = −1

6
and Cτ2/CF = 4

3
, respectively. The regularized O(αs) contributions of the
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1 and Ou,c

2

operators Oc
1 and Oc

2 are discussed in detail in Ref. [1] (cf Part III of this thesis). In the
following exposition we therefore focus on the discussion of the contributions from Ou

2 to
the individual diagrams.

We use the MS renormalization scheme, ie we introduce the renormalization scale in the
form µ 2 = µ2 exp(γE)/(4π) followed by minimal subtraction. The precise definition of the
evanescent operators, which is necessary to fully specify the renormalization scheme, will
be given later.

3.1 Tensor Integrals and Irreducible Numerators

We follow [4] and derive a method that allows to express tensor integrals of generic dimen-
sion d in terms of scalar integrals of higher dimension.

An arbitrary L loop tensor integral with N internal and E external lines can be written
as a linear combination of integrals of the form

G(d)
({
su
}
,
{
m2
v

})
=

∫ ( L∏
i=1

ddki

(2π)d

)
N∏
j=1

nj∏
l=1

k̄
µjl

j P
νj

k̄j ,mj
, (6)

where

P ν
k,m =

1(
k2 −m2 + i ε

)ν and k̄j =
L∑
n=1

ωjn kn +
E∑

m=1

ηjm qm .

ki and qj denote the loop and external momenta, respectively. The matrices of incidences
of the diagram, ω and η, have matrix elements ωij, ηij ∈ {−1, 0, 1}. {su}, finally, denotes a
set of scalar invariants formed from the external momenta qj. In principle, the exponents
νi would generically be equal to 1. However, often two or more internal lines are equipped
with the same propagator. This may be taken into account by reducing N to N eff < N ,
thus increasing some of the exponents νi. Applying the integral representations

1(
k2 −m2 + i ε

)ν =
(−i)ν

Γ(ν)

∞∫
0

dααν−1 exp
[
i α
(
k2 −m2 + i ε

)]
(7)

and

nj∏
l=1

k̄µil
j = (−i)nj

nj∏
l=1

∂

∂(aj)µjl

exp
[
i(aj k̄j)

]∣∣∣∣∣
aj=0

, (8)

allows us to easily perform the integration over the loop momenta by using the d dimen-
sional Gaussian integration formula∫

ddk exp
[
i
(
Ak2 + 2(p k)

)]
= i
( π

iA

) d
2

exp

[
−i p

2

A

]
.
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We find the following parametric representation:

G(d) = iL
(

1

4 iπ

)d L
2

N∏
j=1

(−i)nj+νj

Γ(νj)
×

nj∏
l=1

∂

∂(aj)µjl

×
∞∫

0

. . .

∞∫
0

dαj α
νj−1
j[

D(α)
] d

2

exp

[
i Q
(
{su}, α, a

)
D(α)

− i

N∑
r=1

αr
(
m2
r − i ε

)] ∣∣∣∣∣
aj=0

. (9)

The differentiation with respect to aj generates products of external momenta, metric
tensors gµν and polynomials R(α) and provides an additional factor D(α)−1. Because of

R(α) exp

[
−i

N∑
r=1

αrm
2
r

]
= R(i∂) exp

[
−i

N∑
r=1

αrm
2
r

]
, with ∂j =

∂

∂m2
j

,

we may replace the polynomials R(α) with R(i∂). The additional factor of 1/D(α) can
be absorbed by a redefinition of d, ie by shifting d to d + 2 and multiplying with a fac-
tor (4 iπ)L. The crucial point is, that this way all factors generated by differentiation
with respect to aj may be written as an operator which does not depend on the inte-
gral representations we have introduced in Eqs. (7), (8). Therefore, it is possible to write
tensor integrals in momentum space in terms of scalar ones without direct appeal to the
parametric representation (9):∫ ( L∏

i=1

ddki

(2π)d

)
N∏
j=1

nj∏
l=1

k̄
µjl

j P
νj

k̄j ,mj
= T

(
q, ∂,d+

) ∫ ( L∏
i=1

ddki

(2π)d

)
nj∏
l=1

P
νj

k̄j ,mj
, (10)

where the tensor operator T is given by

T
(
q, ∂,d+

)
= exp

[
− i Q

(
{s̄i}, α, a

)
(4 iπ)L d+

]
×

N∏
j=1

nj∏
l=1

∂

∂(aj)µjl

exp
[
i Q
(
{s̄i}, α, a

)
(4 iπ)L d+

]∣∣∣∣∣ aj=0
αj=i∂j

. (11)

The operator d+ shifts the space-time dimension of the integral by two units:

d+G(d)
({
si
}
,
{
m2
j

})
= G(d+2)

({
si
}
,
{
m2
j

})
.

The quantities s̄i are scalar invariants formed out of external momenta qi and auxiliary
momenta ai. Notice that throughout the derivation of the tensor operator T the masses
mj must be kept as parameters. They are set to their original values only in the very end.
In Eq. (6), the product over k̄i is very often replaced by a product over ki. This slightly
complicates the notation of the derivation of Eqs. (10) and (11). The result will be of the
same form, however.
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2

3.2 Integration by Parts

According to general rules of d dimensional integration, integrals of the form∫
ddki

∂

∂kµi

k̄µl∏N
j=1

(
k̄2
j −m2

j + i ε
)νj

vanish. There may exist suitable linear combinations∫
ddki

∂

∂kµi

∑
l clk̄

µ
l∏N

j=1

(
k̄2
j −m2

j + i ε
)νj

that lead to recurrence relations connecting the original integral to more simple ones. The
task of finding such recurrence relations, however, is in general a non-trivial one. A criterion
for irreducibility of multi-loop Feynman integrals is presented in [5]. In [4], the method of
partial integration is combined with the technique of reducing tensor integrals by means
of shifting the space-time dimension (cf preceding section).

The integral

F (d)
ν1ν2ν3ν4ν5

=

∫
ddl ddr Iν1ν2ν3ν4ν5 =∫

ddl ddr
1[

l2
]ν1[r2

]ν2[(l + r)2
]ν3[(l + q)2

]ν4[(r + p′)2
]ν5 (12)

enters the calculation of diagrams 3.1c) (p′2 = 0). At the same time it is a very good
example to illustrate the integration by parts method. The operators 1±, 2±,... are
defined through

1±fν1ν2ν3ν4ν5 := fν1±1 ν2ν3ν4ν5 , . . . .

The present case is especially simple because we only need to calculate one derivative.
Using the shorthand notation Iν1ν2ν3ν4ν5 = I{νi} we get

∂

∂rµ
rµ I{νi} =

[
d− 2 ν2 r

2 2+ − 2 ν3 r(l + r)3+ − 2 ν5 r(r + p′)5+
]
I{νi}.

Scalar products of the form a · b we write as [a2 + b2 − (a− b)2] /2 and find

∂

∂rµ
rµ I{νi} =

[
d− 2 ν2 − ν3 − ν5 − ν3(2

− − 1−)3+ − ν5 2− 5+
]
I{νi}.

At this stage we might also reduce some of the scalar products by shifting the dimension.
The corresponding procedure is presented eg in [4]. In the present case, however, the pure
integration by parts approach suffices. The identity∫

ddr
∂

∂rµ
rµ I{νi} ≡ 0
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yields directly the desired recurrence relation for the integral F
(d)
ν1ν2ν3ν4ν5 [Eq. (12)]:

F (d)
ν1ν2ν3ν4ν5

=
ν3(2

− − 1−)3+ + ν5 2− 5+

d− 2 ν2 − ν3 − ν5

F (d)
ν1ν2ν3ν4ν5

. (13)

Subsequent application of this relation allows to express any integral F (d){νi} with indices
νi ∈ N+ as a sum over integrals F (d){νi} with at least ν1 = 0 or ν2 = 0. The same

recurrence relation as for F
(d)
{νi} applies for the integral F̃

(d)
{νi}:

F̃ (d)
ν1ν2ν3ν4ν5

=

∫
ddl ddr

1[
l2
]ν1[r2

]ν2[(l + r)2
]ν3[(l − q)2

]ν4[(r + p)2 −m2
b

]ν5 ,
F̃ (d)
ν1ν2ν3ν4ν5

=
ν3(2

− − 1−)3+ + ν5 2− 5+

d− 2 ν2 − ν3 − ν5

F̃ (d)
ν1ν2ν3ν4ν5

, (14)

where p2 = m2
b . This relation will come in handy when evaluating the diagrams 3.1d).

The general procedure is the following:

• We express, as far as possible, all scalar products in the numerator of a given Feynman
integrand in terms of inverse propagators Pk̄,m and cancel them down.

• We write the integral as a sum over tensor integrals of the form (6), possibly with
products over kµi instead of k̄µi . For each of those integrals the tensor operator T is
determined in order to reduce the problem to scalar integrals with shifted space-time
dimension.

• We apply appropriate recurrence relations to reduce the number of propagators in
the integrals – and hope that we can solve the remaining integrals.

It is worth mentioning that, sometimes, recurrence relations obtained by combining inte-
gration by parts and dimension shifting can help, too. In general, however, this will only
allow us to find a set of master integrals that are all of generic dimension d. Unfortunately
it will not help to lower the power of a propagator to zero. In [6] an algorithm for calculat-
ing two-loop propagator type Feynman diagrams with arbitrary masses is proposed. The
combined method allows to reduce the problem to a set of 15 essentially two-loop and 15
essentially one-loop master integrals.

3.3 Unrenormalized Form Factors of Oc
1 and Oc

2

The matrix elements of Oc
1 and Oc

2 are discussed in detail in Ref. [1], where the unrenormal-

ized form factors F
(7,9)
a,c of 〈d `+`−|Oc

a|b〉 (a = 1, 2), corresponding to diagrams 3.1a)–3.1e),
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are given in the form

F (7,9)
a,c =

∑
i,j,l,m

c
(7,9)
a,ijlm ŝ

i lnj(ŝ) zl lnm(z),

where i, j and m are non-negative integers and l = −i,−i+ 1
2
,−i+ 1, . . . , ŝ = s/m2

b and
z = m2

c/m
2
b . Because of the lengthy result, we cite it only in parts in this paper.

We use the abbreviations Ls = ln(ŝ), Lµ = ln (µ/mb) and Lc = ln(z)/2. The renormalized

form factors F
(9)
i,u and F

(7)
i,u of the sum of diagrams 3.1a)-e) are

F
(9)
1,c =

(
−1424

729
+

16

243
iπ +

64

27
Lc

)
Lµ −

16

243
Lµ Ls +

(
16

1215
− 32

135
z−1

)
Lµ ŝ

+

(
4

2835
− 8

315
z−2

)
Lµ ŝ

2 +

(
16

76545
− 32

8505
z−3

)
Lµ ŝ

3 − 256

243
L2
µ + f

(9)
1 , (15)

F
(9)
2,c =

(
256

243
− 32

81
iπ − 128

9
Lc

)
Lµ +

32

81
Lµ Ls +

(
− 32

405
+

64

45
z−1

)
Lµ ŝ

+

(
− 8

945
+

16

105
z−2

)
Lµ ŝ

2 +

(
− 32

25515
+

64

2835
z−3

)
Lµ ŝ

3 +
512

81
L2
µ + f

(9)
2 , (16)

F
(7)
1,c = −208

243
Lµ + f

(7)
1 , F

(7)
2,c =

416

81
Lµ + f

(7)
2 . (17)

The analytic results for f
(9)
1 , f

(7)
1 , f

(9)
2 , and f

(7)
2 are decomposed as follows:

f (b)
a =

∑
i,j,l,m

κ
(b)
a,ijlm ŝ

i Ljs z
l Lmc +

∑
i,j

ρ
(b)
a,ij ŝ

i Ljs. (18)

For the quantities ρ
(b)
a,ij, which collect the half-integer powers of z, and the coefficients κ

(b)
a,ijlm

we refer to Appendix B of Ref. [1].

3.4 Unrenormalized Form Factors of Ou
1 and Ou

2

The remainder of this section is organized as follows: we first give the results for diagrams
3.1a) and b), which are calculated by means of the Mellin-Barnes approach [7]. We then
turn to the calculation of diagrams 3.1c). We have used both the Mellin-Barnes technique
and the techniques presented in Sections 3.1 and 3.2. Both approaches are discussed in
detail. Subsequently, we comment on the problems arising with diagram 3.1d). Up to
now, the corresponding integral has withstood our attempts to solve it. We then give the
form factors of diagram 3.1e). Among the diagrams in Fig. 3.1f), only those where the
virtual photon is emitted from the up or charm quark line, respectively, are non-zero. As
they factorize into two one-loop diagrams, their calculation is straightforward. We already
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mention at this point that it is convenient to omit these diagrams in the discussion of
the matrix elements of O1 and O2. We take them into account together with the virtual
corrections to O9.

In the following, p and p′ denote the momenta of the b and s quark, respectively, whereas
q is given by q = p− p′.

3.4.1 Diagrams 3.1a) and b)

The calculation of the contribution from diagrams 3.1a) and b) opposes no difficulties.
The diagram where the photon is emitted from the internal s quark line can be treated
by the Mellin-Barnes approach. Alternatively, we may get the result directly from the
corresponding form factors of the b→ s `+`− transition by taking the limit mc → 0. Up to
O(ŝ3), the form factors for the contribution of the sum of the three diagrams in Fig. 3.1a)
are given by

F
(9)
2,u [a] = CF ·

[
− 2

27 ε2
+

(
1

ε
+ 4Lµ

)(
−19

81
+

4

27
Ls −

4

27
iπ

)
− 8

27 ε
Lµ −

16

27
L2
µ

+

(
−463

486
− 38 iπ

81
+

5π2

27

)
− 4

27
ŝ+

(
− 1

27
− 2

27
Ls

)
ŝ2

+

(
− 4

243
− 8

81
Ls

)
ŝ3 +

26

81
Ls +

8

27
iπ Ls −

2

27
L2
s

]
, (19)

F
(7)
2,u [a] = CF ·

[
1

27

(
1

ε
+ 4Lµ

)
+

37

162
+

2

27
iπ +

2

27
ŝ
(
1 + ŝ+ ŝ2

)
Ls

]
,

where

Ls = ln(ŝ) and Lµ = ln

(
µ

mb

)
.

CF denotes the colour factor. For the sum of the diagrams in Fig. 3.1b) we find

F
(9)
2,u [b] = CF ·

[
− 2

27 ε2
+

(
1

ε
+ 4Lµ

)(
1

81
− 4

135
ŝ− 1

315
ŝ2 − 4

8505
ŝ3

)
− 8

27 ε
Lµ −

16

27
L2
µ

+

(
917

486
− 19π2

81

)
+

(
172

225
− 2π2

27

)
ŝ+

(
−871057

396900
+

2π2

9

)
ŝ2 (20)

+

(
−83573783

10716300
+

64π2

81

)
ŝ3

]
,
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Figure 3.2: The two dia-
grams contributing to the
building block Juαβ. The
curly and wavy lines repre-
sent gluons and photons, re-
spectively.

F
(7)
2,u [b] = CF ·

[
− 5

27 ε
− 20

27
Lµ

+
13

162
+

(
25

81
− π2

27

)
ŝ+

(
118

81
− 4π2

27

)
ŝ2 +

(
10361

2835
− 10π2

27

)
ŝ3

]
.

3.4.2 Diagrams 3.1c), part 1

The diagram 3.1c) may be calculated in two ways, which we elucidate both. We first
present how to calculate diagram 3.1c) by pure Mellin-Barnes methods. We discuss this
approach for two reasons. First, it differs in some way from the calculation of diagram
1a) in Ref. [1], where we used a double Mellin-Barnes representation, too. Secondly, it is
the much more complicated one of the two ways and thus points out the elegance of the
techniques introduced in Sections 3.1 and 3.2. The second solution we will demonstrate in
the following section. Both approaches yield the same result, which is, needless to say, an
excellent consistency check.

It is advisable to first evaluate the building block Juαβ, shown in Fig. 3.2. Using the notation
introduced by Simma and Wyler [8], it reads

Juαβ =
e gsQu

16π2

[
E(α, β, r)∆i

(u)
5 + E(α, β, q)∆i

(u)
6 − E(β, r, q)

rα
q ·r

∆i
(u)
23

−E(α, r, q)
rβ
q ·r

∆i
(u)
25 − E(α, r, q)

qβ
q ·r

∆i
(u)
26 − E(β, r, q)

qα
q ·r

∆i
(u)
27

]
L
λ

2
, (21)

where q and r denote the momenta of the (virtual) photon and gluon. The indices α and
β will be contracted with the propagators of the photon and the gluon, respectively. The
matrix E(α, β, r) is defined as

E(α, β, r) =
1

2
(γαγβr/− r/γβγα) (22)
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and the dimensionally regularized quantities ∆i
(u)
k occurring in Eq. (12) read

∆i
(u)
5 = 4B+

∫
S

dx dy
[
4(q ·r)x y (1− x)ε+ r2 x (1− x)(1− 2x)ε

+q2 y(2− 2 y + 2x y − x)ε+ (1− 3x)C
]
C−1−ε ,

∆i
(u)
6 = 4B+

∫
S

dx dy
[
−4(q ·r)x y (1− y)ε− q2 y (1− y)(1− 2 y)ε

−r2 x (2− 2x+ 2x y − y)ε− (1− 3 y)C
]
C−1−ε ,

∆i
(u)
23 = −∆i26 = 8B+(q ·r)

∫
S

dx dy x y εC−1−ε ,

∆i
(u)
25 = −8B+(q ·r)

∫
S

dx dy x (1− x) ε C−1−ε ,

∆i
(u)
27 = 8B+(q ·r)

∫
S

dx dy y (1− y) ε C−1−ε , (23)

where B+ = (1 + ε)Γ(ε) eγEεµ2ε and C is given by

C = −2x y(q ·r)− r2 x (1− x)− q2 y (1− y) + i δ.

The integration over the Feynman parameters x and y is restricted to the simplex S, ie
y ∈ [0, 1− x], x ∈ [0, 1]. Due to Ward identities, the quantities ∆i

(u)
k are not independent

of one another. Namely,
qαJαβ = 0 and rβJαβ = 0

imply that ∆i
(u)
5 and ∆i

(u)
6 can be expressed as

∆i
(u)
5 = ∆i

(u)
23 +

q2

q ·r
∆i

(u)
27 , ∆i

(u)
6 =

r2

q ·r
∆i

(u)
25 + ∆i

(u)
26 . (24)

After the variable transformation y → y′(1− x), the quantity C may be written as

C = −x(1− x)

[
(r + y q)2 +

y(1− y)

x
q2

]
+ i δ,

where we have omitted the prime to ease the notation. The variable transformation pro-
vides the Jacobian (1 − x) and maps the integration region from the simplex on to the
unit square, ie x, y ∈ [0, 1]. The idea is, to apply a Mellin-Barnes representation directly
on C−λ, ie before performing the loop integral over r. This is in contrast to the procedure
followed in [1, 9]. The Mellin-Barnes representation for the propagator (K2−M2)−λ reads
(λ > 0)

Mγ,s(K
2,M2, λ) :=

1

(K2 −M2)λ
=

1

(K2)λ
1

Γ(λ)

1

2 iπ

∫
γ

ds

(
−M

2

K2

)s
Γ(−s) Γ(λ+ s) .

(25)
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The integration path γ runs parallel to the imaginary axis and intersects the real axis
somewhere between −λ and 0. The Mellin-Barnes representation of C−λ is obtained by
making the identifications

K2 ↔ (r + y q)2 and M2 ↔ y(1− y)

x
q2.

The corresponding Mellin integral is given by

C−λ =
eiπ λ

2 iπ

∫
γ

dt x−t−λ (1− x)−λ yt (1− y)t
Γ(−t) Γ(t+ λ)

Γ(λ)

(q2)
t[

(r + y q)2
]t+λ .

We have got rid of non-integer powers of negative numbers by use of the formula

(x± i δ)α = e±iπδ(−x∓ i δ)α.

The variable λ takes the value 1 + ε throughout the present calculation. Inserting the
building block, we get the following analytical expression corresponding to diagram 3.1c)

Mu
2 [c] = −i gs µ̄4ε

∫
ddr

(2π)d
ū(p′)

γβ(p′/− r/)RJαβ(r, q)γβ
r2(r − p′)2

u(p)
λ

2
.

We use the Mellin-Barnes representation for C−λ, entering via Jαβ. The propagator struc-
ture of the integrand is then given by

P =
1

r2 (r − p′)2
[
(r + y q)2

]t+1+ε .

We may apply an ordinary Feynman parameterization for P according to

1

D1D2D
t+1+ε
3

=

1∫
0

du dv
ut+ε (1− u)Γ(3 + t+ ε)

Γ(1 + t+ ε)

× 1[
(1− u)(1− v)D1 + (1− u)v D2 + uD3

]3+t+ε ,

withD1 = r2, D2 = (r−p′)2 andD3 = (r+y q)2. Subsequently shifting the loop momentum
r to r + (1− u)v p′ − u y q, we find

P =

1∫
0

du dv
ut+ε(1− u) Γ(3 + t+ ε)

Γ(1 + t+ ε)
· 1

(r2 −∆)3+t+ε ,

where
∆ = −u v y(1− u)

(
m2
b − q2

)
− u y2(1− u)q2.
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After changing the order of integration and performing the integral over the loop momen-
tum r, we arrive at

Mu
2 [c] = eQu g

2
s CF µ̄

4ε e
iπ(1+ε)

2 iπ

∫
γ

dt

1∫
0

dx dy du dv x−t−1−ε (1− x)−1−ε yt (1− y)t

Γ(−t) Γ(3 + t+ ε) (q2)
t
ut+ε ū(p′)

[
P1

∆t+1+2ε
+

P2

∆t+2ε

]
u(p), (26)

where P1 and P2 are polynomials in the Feynman parameters. We apply a second Mellin-
Barnes representation to the quantities ∆−λ:

∆−λ = eiπ λMγ′,t′
(
m2
b u v y(1− u)(1− ŝ),m2

b u y
2(1− u)ŝ, λ

)
.

There are two values λ can take here, namely t+ 1 + 2ε and t+ 2ε. Correspondingly, the
integration path γ′ has to satisfy

−Re(t)− 1− 2ε < Re(t′) < 0 and − Re(t)− 2ε < Re(t′) < 0,

respectively. We change the order of integration once more and do the integrals over the
Feynman parameters x, y , u and v, which all are of the form

1∫
0

xp(t,t
′)(1− x)q(t,t

′) = β
[
p(t, t′) + 1, q(t, t′) + 1

]
.

The integration paths γ and γ′ have to be chosen such that all Feynman parameter integrals
exist for values of t ∈ γ, t′ ∈ γ′, ie Re[p(t, t′)], Re[q(t, t′)] > −1. The dependence of Mu

2 [c]
on ŝ is of the form

Mu
2 [c] =

1

(1− ŝ)1+ε

∫
γ

dt

∫
γ

dt′ ŝt
(

ŝ

1− ŝ

)t′ [
F0(t, t

′) + ŝ F1(t, t
′) + ŝ2F1(t, t

′)
]
. (27)

The remaining Mellin-Barnes integrals we perform by closing both γ and γ′ in the right
half-plane and identifying the integrals with the sum over the residues of the poles enclosed
by the paths. This leads directly to an expansion in ŝ. In the following we just give the
locations of all poles that have to be taken into account, but refrain from mentioning every
technical detail. We first care about the t′ integration. At this point is important not to
keep the t integration at the back of our mind. It turns out that some of the residues
we need to calculate depend on t and t′. We consider ‘coupled’ and ‘un-coupled’ residues
separately.

Un-coupled residues
We find that we have to take into account the series of poles located at

t′ = 0, 1, 2, 3, . . . ,

in order to do the t′ integral. We sum the residues up to the desired order in ŝ. As what
concerns the t integration, we need the residues
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• of the series’ of poles at

t = 0, 1, 2, 3, . . . ,

t = −ε, 1− ε, 2− ε . . . ;

• and of the two single poles at

t = 1− 2 ε and t = 2− 2 ε.

Again we need only to sum the residues up to the desired order in ŝ.

Coupled residues
The coupled residues are somewhat more involved. They are associated with the poles in
t′ situated at

t′ = 1− t− 2 ε, 2− t− 2 ε (for type A terms),

t′ =− t− 2 ε, 1− t− 2 ε, 2− t− 2 ε (for type B terms).

Here we have to distinguish between terms associated with ∆−t−2 ε (type A) and ∆−1−t−2 ε

(type B) [cf Eq. (26)]. In view of Eq. (27) it becomes immediately clear that in this case
the integration over t will lead to contributions of fixed order in ŝ, ie we have to take
into account all poles enclosed by the integration path γ to get the contributions of the
corresponding orders. We need the residues

• of the series’ of poles at

t = 0, 1, 2, 3, . . . ,

t = −ε, 1− ε, 2− ε, . . . ,

t = 2− 4 ε, 3− 4 ε, 4− 4 ε, . . . ;

• and of the two single poles at

t = 1− 2 ε and t = 2− 2 ε.

We give the result of the calculation in the next section and make only a concluding
comment on the evaluation of the infinite sums. It is straightforward to write down the
explicit expression for the residues at t = n (n ∈ N), etc. The summation over n then
yields hypergeometric functions as eg

3H2

(
1, −2 + 2 ε, −3− 3 ε

ε, −3 + 4 ε

∣∣∣∣∣ 1
)
.

It is rather tricky to find the corresponding ε expansions. Sometimes, it is easier to do the
Taylor series expansion in ε before the summation. However, for the first few terms the
expansion of the general addends is usually not valid and has to be done explicitly. Only
the remaining terms are summed up analytically. In our calculation we have chosen to
avoid explicit hypergeometrical functions.
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3.4.3 Diagrams 3.1c), part 2

To calculate diagrams 3.1c), there exists a more elegant way, which might prove very useful
for the calculation of other diagrams, too. In the following we present this alternative
approach.

The contribution of the sum of diagrams 3.1c) is given by a combination of integrals of the
form ∫

ddl ddr

∏nl

i=1 l
µi
∏nr

j=1 r
ρj[

l2
]ν1[r2

]ν2[(l + r)2
]ν3[(l + q)2

]ν4[(r + p′)2
]ν5 .

The function D(α), which we do not need to find the tensor operators, is independent of
nl and nr. We give it as an illustration:

D(α) = (α1 + α4) (α2 + α5) + α3 (α1 + α2 + α4 + α5) .

The function Q
(
{s̄i}, α, a

)
, however, must be recalculated for each type of tensor integral.

The expressions get quickly rather lengthy. As an example we give Q({s̄i}, α, a} for nl = 0,
nr = 1:

Q
(
{si}, α, a

)
= − (α1 + α3 + α4)α5 (a1 · p′) + α4

(
α2 + α3 + α1 (α2 + α3 + α5)

)
q2+

m2
b α3 α4 α5 + α3 α4(a1 · q)−

1

4
(α1 + α3 + α4) a

2
1 . (28)

The tensor operator T (cf Section 3.1) for the (nl = 0, nr = 1) integral, finally, reads

T = 16π2 d+
[
qρ1∂3 ∂4 − p′ρ1 (∂1 + ∂3 + ∂4) ∂5

]
.

The action of an operator ∂i on the integral F
(d)
{ν} is

∂n1 F
(d)
ν1ν2ν3ν4ν5

=
Γ(ν1 + n)

Γ(n)
F

(d)
ν1+n ν2ν3ν4ν5 ,

ie ∂i acts similar to the operators i+. The next step is to use the recurrence relation (13).
Notice that it must only be applied to integrals with ν1, ν2 > 0. As mentioned before, we
are left with integrals that have at least ν1 = 0 or ν2 = 0. Hence, the remaining task is the
calculation of the two integrals

F
(d)
0ν2ν3ν4ν5

and F
(d)
ν10ν3ν4ν5

.

In the present calculation d may take the values

d = 4− 2ε, 6− 2ε, 8− 2ε or 10− 2ε.
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We start with the discussion of the integral F
(d)
0ν2ν3ν4ν5

and arbitrary indices νi ∈ N+. After
straightforward Feynman parametrizations and integration over the loop momenta l and r
we get

F
(d)
0ν2ν3ν4ν5

=
(−1)Σ

(4π)d

1∫
0

1∫
0

1∫
0

du dx dy
Γ (Σ− d)

Γ(ν2) Γ(ν3) Γ(ν4) Γ(ν4)

×Dd−Σ ud/2−ν4−1 xν5−1 yν3+ν4−3−1−d/2 (1− u)d/2−ν3−1 (1− x)ν2−1 (1− y)ν2+ν5−2, (29)

where we have introduced the shorthand notation

Σ =
5∑
i=2

νi.

The Feynman denominator D is given by

D = −m2
b y (1− y)

[
x+ (1− x)ŝ

]
− i δ.

We represent D−λ (λ > 0) as a Mellin-Barnes integral:

D−λ =
1

2 iπ

∫
γ

dt eiπ λm−2λ
b ŝt x−λ−t y−λ (1− x)t (1− y)−λ

Γ(−t) Γ(t+ λ)

Γ(λ)
.

All Feynman parameter integrals are now of the form

1∫
0

xp(t)(1− x)q(t) = β
[
p(t) + 1, q(t) + 1

]
.

Again, the integration path γ has to be chosen such that all Feynman parameter integrals
exist for values of t ∈ γ, ie Re

[
p(t)

]
, Re

[
q(t)

]
> −1. The expression for F

(d)
0ν2ν3ν4ν5

now
reads

F
(d)
0ν2ν3ν4ν5

= −ŝt e−id πm
2(d−Σ)
b

(4π)d
Γ

(
d

2
− ν2 − ν5

)
Γ

(
d− t−

4∑
i=2

νi

)
Γ(t− d+ Σ)×

Γ(−t) Γ(ν2 + t) Γ
(
d
2
− ν3

)
Γ
(
d
2
− ν4

)
Γ(ν2) Γ(ν3) Γ(ν4) Γ(ν5) Γ(d− ν3 − ν4) Γ(3 d/2− Σ)

. (30)

By inspection of the explicit expressions, we get the following conditions for Re(t):

Re(t) > −ν2, Re(t) < d− ν2 − ν3 − ν4. (31)
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To perform the integration over the Mellin parameter t, we close the integration path in
the right half-plane and use the residue theorem to identify the integral with the sum over
the residues of the poles located at

t = 0, 1, 2, . . . , (32)

t = d− ν2 − ν3 − ν4, d− ν2 − ν3 − ν4 + 1, d− ν2 − ν3 − ν4 + 2, . . . .

The constraints (31) ensure that the path γ separates the series of poles that extends to
the right from the series extending to the left, ie we have to take into account none of
the poles located at t = −ν2,−ν2 − 1, ... or t = d − Σ, d − Σ − 1, ... . In view of the
factor ŝt in Eq. (30), the evaluation of the residues at the pole positions listed in Eq. (32)
corresponds directly to an expansion in ŝ. Notice that closing the integration path in the
right half-plane yields an overall minus sign due the clockwise orientation of the integration
contour. The evaluation of the integrals F

(d)
ν10ν3ν4ν5

is completely analogous and needs not
to be discussed further.

Reducing tensor integrals to scalar ones and applying recurrence relations proves, in the
present case, to be quite efficient. The form factors of diagrams 3.1c) we find to be

F
(9)
2,u [c] = CF ·

[
2

3 ε2
+

1

ε

(
5

3
− 4Ls

3
+

8

3
Lµ +

4 iπ

3

)
+

16

3
L2
µ (33)

+
1

2
− 6Ls +

2

3
L2
s +

10 iπ

3
− 8 iπ

3
Ls −

5π2

3

+

(
4

3
− 4Ls +

2

3
L2
s +

2π2

9

)
ŝ+

(
−1− 2Ls +

2

3
L2
s +

2π2

9

)
ŝ2

+

(
−41

27
− 10

9
Ls +

2

3
L2
s +

2π2

9

)
+

(
20

3
+

16 iπ

3
− 16

3
Ls

)
Lµ

]
,

F
(7)
2,u [c] = CF ·

[
1

3 ε
+

5

2
+

2 iπ

3
+

(
2Ls
3
− L2

s

3
− π2

9

)
ŝ+

(
2

3
− L2

s

3
− π2

9

)
ŝ2 (34)

+

(
5

6
− Ls

3
− L2

s

3
− π2

9

)
ŝ3 +

4

3
Lµ

]
.

As stated before, the pure Mellin-Barnes approach yields the same result.

3.4.4 Diagrams 3.1d)

In the case of diagrams 3.1d), neither of the two methods used to evaluate diagrams 3.1c)
has been crowned with success so far. From my point of view, the most promising approach
is nevertheless shifting the space-time dimension and subsequent application of recurrence
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relations. We therefore comment in a few words on the present stage of the corresponding
calculation.

After reducing the tensor integrals to scalar ones, we are left with integrals F̃
(d)
ν1ν2ν3ν4ν5 , for

which the same recurrence relation as for F
(d)
ν1ν2ν3ν4ν5 holds [cf Eq. (14)]. The problem can

thus be reduced to the two integrals F̃
(d)
0ν2ν3ν4ν5

and F̃
(d)
ν10ν3ν4ν5

. The first one is readily solved

in the same way as F
(d)
0ν2ν3ν4ν5

and F
(d)
ν10ν3ν4ν5

whereas the second one has not been cracked
up to now.

To illustrate the difficulties, we explicitly consider the integral

F̃10111 =
1

(4π2)d
F̃

(d=4−2ε)
10111 =

1

(4π2)d

∫
ddl ddr

1

l2 (l + r)2 (l − q)2
[
(r + p)2 −m2

b

] .
It is more promising to perform the integration over r before the integration over l. This
way it is straightforward to find

F̃10111 =
Γ(ε)

(4π)4−2ε

1∫
0

dx dy du
u−ε (1− u)−ε (1− x)−1−ε (1− y)ε

∆2ε
,

where

∆ = m2
b(1− x)(1− y)

(1− u y)

u
− q2x y(1− y).

We may use again a Mellin-Barnes representation for ∆−2ε with the hope of finding a
natural expansion in terms of ŝ = q2/m2

b . We get

F̃10111 = − 1

2 iπ

∫
γ

dt

1∫
0

dx dy du
e−iπ t

(4π)4−2ε
m−4ε
b ŝt

× ut+ε (1− u)−ε xt (1− x)−1−t−ε yt (1− y)−ε (1− u y)−t−2ε Γ(−t) Γ(t+ 2ε).

The integration over the Feynman parameter x yields Euler Γ functions. However, the
term (1 − u y)−s−2ε complicates the evaluation of the y and u integrals. Performing the
integral over u brings in the hypergeometric function

2H1

(
1 + t+ ε, t+ 2 ε

2 + t

∣∣∣∣∣ y
)

=
∞∑
n=0

Γ(1 + t+ ε+ n) Γ(t+ 2ε+ n) Γ(2 + t)

Γ(1 + t+ ε) Γ(t+ 2ε) Γ(2 + t+ n)

yn

Γ(n+ 1)
.

It is now possible to do the remaining Feynman parameter integral over y and to perform
the sum over n. This yields

F̃10111 = − 1

2 iπ

∫
γ

dt e−iπ t

(4π)4−2ε
m−4ε
b ŝt

Γ(−t) Γ(1 + t) Γ(−t− ε) Γ(1 + t+ ε) Γ(t+ 2 ε) Γ(1− ε)

(1 + t) Γ(2 + t− ε)

× 3H2

(
1 + t, 1 + t+ ε, t+ 2ε

2 + t, 2 + t− ε

∣∣∣∣∣1
)
.
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Of course one is now tempted to express the hypergeometric function as an infinite sum,
to close the integration contour in the right half-plane, to calculate the residues that
contribute to the desired orders in ŝ and afterwards to calculate the infinite sum again.
However, there is a problem with the above hypergeometric function, viz it is only defined
for

Re
[
(2 + t) + (2 + t− ε)− (1 + t)− (1 + t+ ε)− (t+ 2ε)

]
= Re(2− t− 4ε) > 0.

From this it becomes evident that we will run into difficulties when closing the integration
path in the right half-plane. Indeed, naively summing up all residues contributing atO (ŝm)
(m = 2, 3, 4, ...) yields divergent results. At the moment I see two ways out:

• Close the integration contour in the left half-plane. This is certainly allowed, but
results in an expansion in 1/ŝ. In other words, this requires to take into account all
residues lying on the left side of γ what, let it be noted, yields the exact result, which
we may then expand in terms of ŝ.

• Introduce an additional regulator, ie replace
∫ 1

0
dy by

∫ 1−εW
0

dy. This yields a hyper-
geometric function with argument 1− εW instead of 1. We may not, however, expect
the integral over the semi-circle, introduced to close the integration contour, to be
harmless.

To follow up these ideas requires some more time because they comprise additional technical
difficulties. I have also tried to find other recurrence relations and applied Mellin-Barnes
representations in other ways, however without being rewarded. We stress that the integrals
F̃

(d)
ν10ν3ν4ν5

are the missing puzzle to complete the NNLL calculation of the process b →
d `+`−.

3.4.5 Diagrams 3.1e)

The diagrams in 3.1e) finally, may again be solved in two ways. The first way is to use the
heavy external momentum expansion technique [7]. The second possibility is to apply the
dimension-shifting-and-integration-by-parts procedure also for this diagram. The structure
of the integral is of propagator type, ie depends only on one external momentum. Hence,
we might even use the algorithm presented in [6] to boil the problem down to two essentially
two-loop and two essentially one-loop integrals in the generic dimension. It is, however, not
necessary to reduce the problem that far because the integrals get solvable immediately
after applying a first recurrence relation. We do without presenting the calculation of
diagram 3.1e) and merely give the results for the form factors.

F
(9)
2,u [e] =

2

3

(
1

ε
+ 4Lµ

)
+

49

9
+

4 iπ

3
− 4

3
Ls −

16

3
ζ(3), (35)

F
(7)
2,u [e] = 0.
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3.5 O(αs) Counterterms to Ou
1 and Ou

2

So far, we have calculated the two-loop matrix elements 〈d `+`−|CiOq
i |b〉 (i = 1, 2; q =

u, d). As the operators mix under renormalization, there are additional contributions
proportional to Ci. These counterterms arise from the matrix elements of the operators

2∑
j=1

δZij(O
u
j +Oc

j) +
10∑
j=3

δZijOj +
12∑
j=11

δZij(O
u
j +Oc

j), i = 1, 2, (36)

where the operators O1–O10 are given in Eq. (1). Ou,c
11 and Ou,c

12 are evanescent operators,
ie operators which vanish in d = 4 dimensions. In principle, there is some freedom in the
choice of the evanescent operators. However, as we want to combine our matrix elements
with the Wilson coefficients calculated by Bobeth et al. [10], we have to use the same
definitions:

Ou
11 =

(
d̄LγµγνγσT

auL
)
(ūLγ

µγνγσT abL)− 16Ou
1 ,

Ou
12 =

(
d̄LγµγνγσuL

)
(ūLγ

µγνγσbL)− 16Ou
2 , (37)

Oc
11 =

(
d̄LγµγνγσT

acL
)
(c̄Lγ

µγνγσT abL)− 16Oc
1 ,

Oc
12 =

(
d̄LγµγνγσcL

)
(c̄Lγ

µγνγσbL)− 16Oc
2 .

The operator renormalization constants Zij = δij + δZij are of the form

δZij =
αs
4π

(
a01
ij +

1

ε
a11
ij

)
+

α2
s

(4π)2

(
a02
ij +

1

ε
a12
ij +

1

ε2
a22
ij

)
+O(α3

s). (38)

The coefficients almij needed for our calculation we take from Refs. [1, 10] and list them for
i = 1, 2 and j = 1, ..., 12:

â11 =

 −2 4
3

0 −1
9

0 0 0 0 −16
27

0 5
12

2
9

6 0 0 2
3

0 0 0 0 −4
9

0 1 0

 , (39)

a12
17 = − 58

243
, a12

19 = − 64
729

, a22
19 = 1168

243
,

a12
27 = 116

81
, a12

29 = 776
243

, a22
29 = 148

81
.

(40)

We denote the counterterm contributions to b → d `+`− which are due to the mixing of
Ou

1 or Ou
2 into four-quark operators by F

ct(7)
i,u→4quark and F

ct(9)
i,u→4quark. They can be extracted

from the equation∑
j

( αs
4π

) 1

ε
a11
ij 〈d `+`−|Ou

j |b〉1-loop = −
( αs

4π

) [
F

ct(7)
i,u→4quark〈Õ7〉tree + F

ct(9)
i,u→4quark〈Õ9〉tree

]
,

(41)
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where j runs over the four-quark operators. As certain entries of â11 are zero, only the
one-loop matrix elements of Ou,c

1 , Ou,c
2 , Ou,c

4 , Ou,c
11 and Ou,c

12 are needed. In order to keep
the presentation transparent, we relegate their explicit form to Appendix A. We do not
repeat the renormalization of the Oc

1 and Oc
2 contributions in this place and refer to [1].

The counterterms which are related to the mixing of Ou
i (i = 1, 2) into O9 can be split into

two classes: The first class consists of the one-loop mixing Ou
i → O9, followed by taking

the one-loop corrected matrix element of O9. It is obvious that this class contributes to the
renormalization of diagram 3.1f), which we take into account when discussing the virtual
corrections to O9. We proceed in the same way with the counterterm just mentioned.

There is a second class of counterterm contributions due to Ou
i → O9 mixing. These

contributions are generated by two-loop mixing of Ou
2 into O9 as well as by one-loop

mixing and one-loop renormalization of the gs factor in the definition of the operator O9.
We denote the corresponding contribution to the counterterm form factors by F

ct(7)
i,u→9 and

F
ct(9)
i,u→9. We obtain

F
ct(9)
i,u→9 = −

(
a22
i9

ε2
+
a12
i9

ε

)
− a11

i9 β0

ε2
, F

ct(7)
i,u→9 = 0, (42)

where we used the renormalization constant Zgs given by

Zgs = 1− αs
4π

β0

2

1

ε
, β0 = 11− 2

3
Nf , Nf = 5. (43)

Besides the contribution from operator mixing, there are ordinary QCD counterterms.

The total counterterms F
ct(j)
i,u (i = 1, 2; j = 7, 9), which renormalize diagrams 3.1a)–3.1e),

are given by

F
ct(j)
i,u = F

ct(j)
i,u→4quark + F

ct(j)
i,u→9. (44)

Explicitly they read

F
ct(9)
2,u =− F

(9)
2,u, div −

8

25515

[
2870− 6300π2 − 420 iπ + 126 ŝ− ŝ3

]

+
8

25515

[
−420 + 23940 iπ + 252 ŝ+ 27 ŝ2 + 4 ŝ3

]
Lµ (45)

− 136

81
L2
s +

[
16

243
(−2− 57 iπ) +

544

81
Lµ

]
Ls −

512

81
L2
µ,

F
ct(7)
2,u =− F

(7)
2,u, div +

2

2835

(
840Lµ + 70 ŝ+ 7 ŝ2 + ŝ3

)
,

172



Virtual Corrections to the Operators Ou,c
1 and Ou,c

2

F
ct(9)
1,u =− F

(9)
1,u, div +

4

76545

[
59570− 6300π2 − 34440 iπ + 126 ŝ− ŝ3

]

+
68

243
L2
s +

[
8

729
(−160 + 57 iπ)− 256

243
Lµ

]
Ls −

256

243
L2
µ, (46)

F
ct(7)
1,u =− F

(7)
1,u, div −

1

8505

(
840Lµ + 70 ŝ+ 7 ŝ2 + ŝ3

)
.

The quantities F
(j)
i,u, div (i = 1, 2; j = 7, 9) will compensate the divergent parts of the form

factors associated with the virtual corrections to Ou
1,2 once this calculation is completed.

They are given by

F
(9)
2,u, div =

128

81 ε2
+

2

2835 ε

[
20790− 23940 iπ − 252 ŝ− 27 ŝ2 − 4 ŝ3

]
+

16

81 ε
(32Lµ − 17Ls),

F
(7)
2,u, div =

92

81 ε
,

(47)

F
(9)
1,u, div = − 64

243 ε2
− 2

76545 ε

[
71820− 23940 iπ − 252 ŝ− 27 ŝ2 − ŝ3

]
− 8

243
(32Lµ − 17Ls),

F
(7)
1,u, div =

46

243 ε
.

As mentioned before, we will take diagram 3.1f) into account only in Section 4. The same
holds for the counterterms associated with the b and s quark wave function renormalization
and, as stated earlier in this subsection, the O(αs) correction to the matrix element of
δZi9O9. The sum of these contributions is

δZ̄ψ〈Oi〉1-loop +
αs
4π

a11
i9

ε

[
δZ̄ψ〈O9〉tree + 〈O9〉1-loop

]
, δZ̄ψ =

√
Zψ(mb)Zψ(ms)− 1,

and provides the counterterm that renormalizes diagram 3.1f). We use on-shell renormal-
ization for the external b and s quark. In this scheme the field strength renormalization
constants are given by

Zψ(m) = 1− αs
4π

4

3

( µ
m

)2ε
(

1

ε
+

2

εIR
+ 4

)
. (48)

So far, we have discussed the counterterms which renormalize the O(αs) corrected matrix
elements 〈d `+`−|Oi|b〉 (i = 1, 2). The corresponding one-loop matrix elements [of O(α0

s)]
are renormalized by adding the counterterms

αs
4π

a11
i9

ε
〈O9〉tree .
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4 Virtual Corrections to the Matrix Elements of the

Operators O7, O8, O9 and O10

The virtual corrections to the matrix elements of O7, O8, O9 and O10 and their renor-
malization is discussed in [1, 11]. For completeness we list the results of the renormalized
matrix elements. They may all be decomposed according to

〈d `+`−|CiOi|b〉 = C̃
(0)
i

(
− αs

4π

) [
F

(9)
i 〈Õ9〉tree + F

(7)
i 〈Õ7〉tree

]
,

where

Õi =
αs
4π

Oi

C̃
(0)
7 =C

(1)
7 , C̃

(0)
8 = C

(1)
8 ,

C̃
(0)
9 =

4π

αs

(
C

(0)
9 +

αs
4π

C
(0)
9

)
and C̃

(0)
10 = C

(1)
10 .

Renormalized matrix element of O7

The renormalized corrections to the form factors F
(9)
7 and F

(7)
7 are given by

F
(9)
7 = −16

3

(
1 +

1

2
ŝ+

1

3
ŝ2 +

1

4
ŝ3

)
, (49)

F
(7)
7 =

32

3
Lµ +

32

3
+ 8 ŝ+ 6 ŝ2 +

128

27
ŝ3 + finf . (50)

The function finf collects the infrared- and collinear singular part:

finf =

[
µ
mb

]2ε
εIR

8

3

(
1 + ŝ+

1

2
ŝ2 +

1

3
ŝ3

)
+

[
µ
mb

]2ε
εIR

4

3
ln(r) +

2

3
ln(r)− 2

3
ln2(r), (51)

where εIR and r = (m2
d/m

2
b) regularize the infrared- and collinear singularities.

Renormalized matrix element of the operator O8

The renormalized corrections to form factors of the matrix element of O8 are

F
(9)
8 =

104

9
− 32

27
π2 +

(
1184

27
− 40

9
π2

)
ŝ+

(
14212

135
− 32

3
π2

)
ŝ2 (52)

+

(
193444

945
− 560

27
π2

)
ŝ3 +

16

9
Ls
(
1 + ŝ+ ŝ2 + ŝ3

)
,
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F
(7)
8 = −32

9
Lµ +

8

27
π2 − 44

9
− 8

9
iπ +

(
4

3
π2 − 40

3

)
ŝ+

(
32

9
π2 − 316

9

)
ŝ2 (53)

+

(
200

27
π2 − 658

9

)
ŝ3 − 8

9
Ls
(
ŝ+ ŝ2 + ŝ3

)
.

Renormalized matrix element of O9 and O10

The renormalized matrix element of O9 and O10, finally, is described by the form factors

F
(9)
9 =

16

3
+

20

3
ŝ+

16

3
ŝ2 +

116

27
ŝ3 + finf , (54)

F
(7)
9 = −2

3
ŝ

(
1 +

1

2
ŝ+

1

3
ŝ2

)
, (55)

F
(9)
10 = F

(9)
9 , (56)

F
(7)
10 = F

(7)
9 , (57)

where finf is defined in Eq. (51).

The renormalized diagrams 3.1e) are properly included by modifying C̃
(0)
9 as follows:

C̃
(0)
9 → C̃

(0,mod)
9 = C̃

(0)
9 − 1

λt

(
C

(0)
2 +

4

3
C

(0)
1

)(
λuH0(0) + λcH0(z)

)
.

For ŝ < 4 z (z = m2
c/m

2
b) the loop function H0(z) can be expanded in terms of ŝ/(4 z). We

give the expansion of H0(z) for this case as well as the result for H0(0):

H0(z) =
1

2835

[
−1260 + 2520 ln

(
µ

mc

)
+ 1008

(
ŝ

4z

)
+ 432

(
ŝ

4z

)2

+ 256

(
ŝ

4z

)3
]
,

(58)

H0(0) =
8

27
− 4

9
ln(ŝ) +

4

9
i π.

5 Corrections to the Decay Width B → Xd `+`−

In this section we first discuss the contribution of the virtual corrections to the decay
width dΓ(B → Xd `

+`−)/dŝ. Following [1, 11], we do also include those bremsstrahlung
corrections needed to cancel the infrared- and collinear singularities. We then discuss in a
second step the remaining bremsstrahlung contributions.
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5.1 Virtual Corrections

In the literature (see eg [12]), the decay width is usually written as

dΓ(b→ Xd`
+`−)

dŝ
=
(αem

4π

)2 G2
F m

5
b,pole |λt|2

48π3
(1− ŝ)2

×
{

(1 + 2 ŝ)

(∣∣∣C̃eff
9

∣∣∣2 +
∣∣∣C̃eff

10

∣∣∣2)+ 4(1 + 2/ŝ)
∣∣∣C̃eff

7

∣∣∣2 + 12 Re
(
C̃eff

7 C̃
eff∗
9

)}
. (59)

All corrections have been absorbed into the effective Wilson coefficients C̃eff
7 , C̃eff

9 and C̃eff
10 .

We follow [1, 11, 12] and write the effective Wilson coefficients as

C̃eff
9 =

(
1 +

αs(µ)

π
ω9(ŝ)

)(
A9 −

λc
λt
T9 h(z, ŝ)−

λu
λt
T9 h(0, ŝ) + U9 h(1, ŝ) +W9 h(0, ŝ)

)
+
αs(µ)

4π

(
λu
λt

(
C

(0)
1 F

(9)
1,u + C

(0)
2 F

(9)
2,u

)
+
λc
λt

(
C

(0)
1 F

(9)
1,c + C

(0)
2 F

(9)
2,c

)
+ A

(0)
8 F

(9)
8

)

C̃eff
7 =

(
1 +

αs(µ)

π
ω7(ŝ)

)
A7 (60)

+
αs(µ)

4π

(
λu
λt

(
C

(0)
1 F

(7)
1,u + C

(0)
2 F

(7)
2,u

)
+
λc
λt

(
C

(0)
1 F

(7)
1,c + C

(0)
2 F

(7)
2,c

)
+ A

(0)
8 F

(7)
8

)

C̃eff
10 =

(
1 +

αs(µ)

π
ω9(ŝ)

)
A10,

where we have provided the necessary modification to account for the CKM structure of
b→ d `+`−. The form factors F

(7,9)
1,u and F

(7,9)
1,u are given by

F
(j)
i,u = F

(j)
i,u [a] + F

(j)
i,u [b] + F

(j)
i,u [c] + F

(j)
i,u [d] + F

(j)
i,u [e] + F

ct(j)
i,u , where i = 1, 2; j = 7, 9.

(61)

At the present time, the contributions F
(j)
i,u [d] are not yet available.

The form factors F
(7,9)
1,c , F

(7,9)
2,c and F

(7,9)
8 can be seen in [1, 11]. The functions ω7(ŝ) and ω9(ŝ)

encapsulate the interference between the tree-level and the one-loop matrix elements of O7

and O9,10 and the corresponding bremsstrahlung corrections, which cancel the infrared-
and collinear divergences appearing in the virtual corrections. When calculating the decay
width (59), we retain only terms linear in αs (and thus in ω7, ω9) in the expressions for

|C̃eff
7 |2, |C̃eff

9 |2 and |C̃eff
10 |2. Accordingly, we drop terms of O(α2

s) in the interference term

Re
(
C̃eff

7 C̃
eff∗
9

)
too, where by construction one has to make the replacements ω9 → ω79

and ω7 → ω79 in this term. The function ω9 has already been calculated in [12], where
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also the exact expression for h(ŝ, z) can be found. For the functions ω7 and ω79 and more
information on the cancellation of infrared- and collinear divergences we refer to [1].

The auxiliary quantities A7, A9, A10, T9, U9 and W9 are the following linear combinations
of the Wilson coefficients Ci(µ):

A7 =
4π

αs(µ)
C7(µ)− 1

3
C3(µ)− 4

9
C4(µ)− 20

3
C5(µ)− 80

9
C6(µ),

A8 =
4π

αs(µ)
C8(µ) + C3(µ)− 1

6
C4(µ) + 20C5(µ)− 10

3
C6(µ),

A9 =
4π

αs(µ)
C9(µ) +

4

3
C3(µ) +

64

9
C5(µ) +

64

27
C6(µ)

+

[
λu + λc
−λt

(
C1(µ) γ

(0)
19 + C2(µ) γ

(0)
29

)
+

6∑
i=3

Ci(µ) γ
(0)
i9

]
ln

(
mb

µ

)
,

A10 =
4π

αs(µ)
C10(µ), (62)

T9 =

(
4

3
C1(µ) + C2(µ)

)
+ 6C3(µ) + 60C5(µ),

U9 =− 7

2
C3(µ)− 2

3
C4(µ)− 38C5(µ)− 32

3
C6(µ),

W9 =− 1

2
C3(µ)− 2

3
C4(µ)− 8C5(µ)− 32

3
C6(µ).

By this definition we do also include some diagrams induced by O3,4,5,6 insertions, viz the
O(α0

s) contributions, the diagrams of topology 3.1e) and those bremsstrahlung diagrams
where the gluon is emitted from the b or d quark line (cf [13]).

We take the numerical values for A7, A9, A10, T9, U9 and W9 from [12], while C
(0)
1 and C

(0)
2

can be found in [9]. For completeness we list them in Table 5.1.

5.2 Bremsstrahlung Corrections

The bremsstrahlung contributions taken into account by introducing the functions ωi(ŝ)
cancel the infrared divergences associated with the virtual corrections. All other brems-
strahlung terms are finite. This allows us to perform their calculation directly in d = 4
dimensions.

The sum of the bremsstrahlung contributions from O7−O8 and O8−O9 interference terms
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µ = 2.5 GeV µ = 5 GeV µ = 10 GeV

αs 0.267 0.215 0.180

C
(0)
1 −0.697 −0.487 −0.326

C
(0)
2 1.046 1.024 1.011(
A

(0)
7 , A

(1)
7

)
(−0.360, 0.031) (−0.321, 0.019) (−0.287, 0.008)

A
(0)
8 −0.164 −0.148 −0.134(
A

(0)
9 , A

(1)
9

)
(4.241, − 0.170) (4.129, 0.013) (4.131, 0.155)(

T
(0)
9 , T

(1)
9

)
(0.115, 0.278) (0.374, 0.251) (0.576, 0.231)(

U
(0)
9 , U

(1)
9

)
(0.045, 0.023) (0.032, 0.016) (0.022, 0.011)(

W
(0)
9 , W

(1)
9

)
(0.044, 0.016) (0.032, 0.012) (0.022, 0.009)(

A
(0)
10 , A

(1)
10

)
(−4.372, 0.135) (−4.372, 0.135) (−4.372, 0.135)

Table 5.1: Coefficients appearing in Eq. (62) for µ = 2.5 GeV, µ = 5 GeV and µ = 10 GeV.
For αs(µ) (in the MS scheme) we used the two-loop expression with 5 flavors and αs(mZ) =
0.119. The entries correspond to the pole top quark mass mt = 174 GeV. The superscript
(0) refers to lowest order quantities and while the superscript (1) denotes the correction
terms of order αs.

and the O8 −O8 term can be written as

dΓBrems,A

dŝ
=
dΓbrems

78

dŝ
+
dΓbrems

89

dŝ
+
dΓbrems

88

dŝ
=(αem

4π

)2 ( αs
4π

) m5
b,pole |λt|2G2

F

48π3
×
(
2 Re [c78 τ78 + c89 τ89] + c88 τ88

)
, (63)

where

c78 = CF · C̃(0,eff)
7 C̃

(0,eff)∗
8 , c89 = CF · C̃(0,eff)

8 C̃
(0,eff)∗
9 , c88 = CF ·

∣∣∣C̃(0,eff)
8

∣∣∣2 . (64)

For the quantities τ78, τ89 and τ88 we refer to [13].

The remaining bremsstrahlung contributions all involve the diagrams with an Ou
1,2 or Oc

1,2

insertion where the gluon is emitted from the u or c quark loop, respectively. The cor-
responding bremsstrahlung matrix elements depend on ∆̄i

(u,c)
23 , ∆̄i

(u,c)
27 , only. In d = 4
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dimensions we find

∆̄i
(u)
23 = 8 (q ·r)

∫ 1

0

dx dy
x y (1− y)2

C(u)
, ∆̄i

(c)
23 = 8 (q ·r)

∫ 1

0

dx dy
x y (1− y)2

C(c)
,

∆̄i
(u)
27 = 8 (q ·r)

∫ 1

0

dx dy
y (1− y)2

C(u)
, ∆̄i

(c)
27 = 8 (q ·r)

∫ 1

0

dx dy
y (1− y)2

C(c)
,

where

C(u) = −2x y (1− y)(q ·r)− q2 y (1− y)− i δ ,

C(c) = m2
c−2x y (1− y)(q ·r)− q2 y (1− y)− i δ .

The analytical expressions for ∆̄i
(c)
23 and ∆̄i

(c)
27 can be expressed in terms of functions Gi(t):

∆̄i
(c)
23 = −2 +

4

w − ŝ

[
z G−1

(
ŝ

z

)
− z G−1

(w
z

)
− ŝ

2
G0

(
ŝ

z

)
+
ŝ

2
G0

(w
z

)]
, (65)

∆̄i
(c)
27 = 2

[
G0

(
ŝ

z

)
−G0

(w
z

)]
, (66)

where z = m2
c/m

2
b . Gk(t) (k ≥ −1) is defined through the integral

Gk(t) :=

1∫
0

dx xk ln
[
1− t x(1− x)− i δ

]
, G1(t) =

1

2
G0(t).

Explicitly, the functions G−1(t) and G0(t) read

G−1(t) =


2π arctan

(√
4−t
t

)
− π2

2
− 2 arctan2

(√
4−t
t

)
, t < 4

−2 iπ ln
(√

t+
√
t−4

2

)
− π2

2
+ 2 ln2

(√
t+
√
t−4

2

)
, t > 4

, (67)

G0(t) =


π
√

4−t
t
− 2− 2

√
4−t
t

arctan
(√

4−t
t

)
), t < 4

−iπ
√

t−4
t
− 2 + 2

√
t−4
t

ln
(√

t+
√
t−4

2

)
, t > 4

. (68)

The quantities ∆̄i
(u)
j we obtain from ∆̄i

(c)
j in the limit z → 0:

∆̄i
(u)
23 = −2 +

ŝ

w − ŝ

[
ln(w)− ln(ŝ)

]
,

∆̄i
(u)
27 = −2

[
ln(w)− ln(ŝ)

]
.
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Following [13] we write

dΓBrems,B

dŝ
=
(αem

4π

)2 ( αs
4π

) G2
F m

5
b,pole |λt|2

48π3
×

1∫
ŝ

dw
{

(c11 + c12 + c22) τ22 + 2 Re
[
(c17 + c27) τ27 + (c18 + c28) τ28 + (c19 + c29) τ29

]}
, (69)

In terms of the quantities ∆̄ieff23 and ∆̄ieff27, defined by

∆̄ieff23 :=− λu
λt

∆̄i
(u)
23 −

λc
λt

∆̄i
(c)
23 , (70)

∆̄ieff27 :=− λu
λt

∆̄i
(u)
27 −

λc
λt

∆̄i
(c)
27 , (71)

the quantities τij introduced in Eq.(69) read

τ22 =
8

27

(w − ŝ)(1− w)2

ŝ w3
×
{[

3w2 + 2 ŝ2(2 + w)− ŝ w (5− 2w)
] ∣∣∆̄ieff23∣∣2 +[

2 ŝ2 (2 + w) + ŝ w (1 + 2w)
] ∣∣∆̄ieff27

∣∣2 + 4 ŝ
[
w (1− w)− ŝ (2 + w)

]
· Re

[
∆̄ieff23∆̄i

eff∗
27

]}
,

(72)

τ27 =
8

3

1

ŝ w
×
{[

(1− w)
(
4 ŝ2 − ŝ w + w2

)
+ ŝ w (4 + ŝ− w) ln(w)

]
∆̄ieff23

−
[
4 ŝ2 (1− w) + ŝ w (4 + ŝ− w) ln(w)

]
∆̄ieff27

}
, (73)

τ28 =
8

9

1

ŝ w (w − ŝ)
×

{[
(w − s)2(2 ŝ− w)(1− w)

]
∆̄ieff23 −

[
2 ŝ (w − ŝ)2(1− w)

]
∆̄ieff27

+ ŝ w
[
(1 + 2 ŝ− 2w)∆̄ieff23 − 2 (1 + ŝ− w)∆̄ieff27

]
· ln
[

ŝ

(1 + ŝ− w)(w2 + ŝ (1− w))

]}
, (74)

τ29 =
4

3

1

w
×
{[

2 ŝ(1− w)(ŝ+ w) + 4 ŝ w ln(w)
]
∆̄ieff23−[

2 ŝ(1− w)(ŝ+ w) + w(3 ŝ+ w) ln(w)
]
∆̄ieff27

}
. (75)
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6. Outlook

The coefficients cij include the dependence on the Wilson coefficients and the color factors.

c11 =Cτ1 ·
∣∣∣C(0)

1

∣∣∣2 , c17 =Cτ2 · C
(0)
1 C̃

(0,eff)∗
7 , c27 =CF · C(0)

2 C̃
(0,eff)∗
7 ,

c12 =Cτ2 · 2 Re
[
C

(0)
1 C

(0)∗
2

]
, c18 =Cτ2 · C

(0)
1 C̃

(0,eff)∗
8 , c28 =CF · C(0)

2 C̃
(0,eff)∗
8 , (76)

c22 =CF ·
∣∣∣C(0)

2

∣∣∣2 , c19 =Cτ2 · C
(0)
1 C̃

(0,eff)∗
9 , c29 =CF · C(0)

2 C̃
(0,eff)∗
9 .

The color factors CF , Cτ1 and Cτ2 arise from the following color structures:∑
a

T aT a = CF1, CF =
N2
c − 1

2Nc

,

∑
a,b,c

T aT cT aT bT cT b = Cτ11, Cτ1 =
N2
c − 1

8N3
c

,

and ∑
a,b

T aT bT aT b = Cτ21, Cτ2 = −N
2
c − 1

4N2
c

.

6 Outlook

We will have to take care of the calculation of diagram 3.1d) first, of course. In addition,
we will also be forced to think about how to account for the large resonant contributions
due to ūu intermediate states. As stated before, the process b→ d `+`− is sensitive to CP
violation. We are most eager to get predictions for the CP asymmetry

a =
Γ (B → Xd `

+`−)− Γ
(
B̄ → X̄d `

+`−
)

Γ (B → Xd `+`−) + Γ
(
B̄ → X̄d `+`−

) .
There is also the hope that we might have learnt something which will turn out to be
helpful in the analysis of b → s `+`− for high values of ŝ. To be precise, at least the
diagram 3.1e) with a c quark running in the fermion loop can be calculated by means of
dimension shifts and recurrence relations – also for values of ŝ > 4 z.
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A One-Loop Matrix Elements of the Four-Quark Op-

erators

In order to fix the counterterms F
ct(7,9)
i,u→4quark (i = 1, 2) in Eq. (41), we need the one-loop

matrix elements 〈d `+`−|Oj|b〉1-loop of the four-quark operators Ou
1 , Ou

2 , O4, O
u
11 and Ou

12.
Due to the 1/ε factor in Eq. (41) they are needed up to O (ε1). The explicit results (in
expanded form) read

〈d `+`−|Ou
2 |b〉1-loop =

(
µ

mc

)2ε
{

4

9 ε
+

4

27

[
2− 3 iπ − 3Ls

]
+

ε

81

[
52− 24 iπ − 21π2 − (24− 36 iπ)Ls + 18L2

s

]}
〈Õ9〉tree ,

〈d `+`−|Ou
1 |b〉1-loop =

4

3
〈d `+`−|Ou

2 |b〉1-loop ,

〈d `+`−|O4|b〉1-loop =−
(
µ

mb

)2ε
{[

4

9
+

ε

945

(
70 ŝ+ 7 ŝ2 + ŝ3

)]
〈Õ7〉tree

+

[
16

27 ε
+

2

8505

(
−420 + 1260 iπ − 1260Ls + 252 ŝ+ 27 ŝ2 + 4 ŝ3

)
+

4 ε

8505

(
420 iπ + 910− 630Ls iπ − 420Ls − 315π2

+ 315L2
s − 126 ŝ+ ŝ3

) ]}
〈Õ9〉tree,

〈d `+`−|Ou
11|b〉1-loop =− 64

27

(
µ

mb

)2ε(
1 +

5

3
ε+ iπ ε+ Ls

)
〈Õ9〉tree ,

〈d `+`−|Ou
12|b〉1-loop =

3

4
〈d `+`−|Ou

11|b〉1-loop .
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